Previous |  Up |  Next

Article

Keywords:
CSL algebra; generalized derivation; generalized Jordan derivation; Hochschild 2-cocycle
Summary:
We investigate a new type of generalized derivations associated with Hochschild 2-cocycles which was introduced by A. Nakajima. We show that every generalized Jordan derivation of this type from CSL algebras or von Neumann algebras into themselves is a generalized derivation under some reasonable conditions. We also study generalized derivable mappings at zero point associated with Hochschild 2-cocycles on CSL algebras.
References:
[1] Ashraf, M., Rehman, N.-Ur: On Jordan generalized derivations in rings. Math. J. Okayama Univ. 42 (2000), 7-9. MR 1887541
[2] Benkovič, D.: Jordan derivations and antiderivations on triangular matrices. Linear Algebra Appl. 397 (2005), 235-244. MR 2116460
[3] Brešar, M.: Jordan derivations on semiprime rings. Proc. Am. Math. Soc. 104 (1988), 1103-1106. DOI 10.1090/S0002-9939-1988-0929422-1 | MR 0929422
[4] Brešar, M.: Characterizations of derivations on some normed algebras with involution. J. Algebra 152 (1992), 454-462. DOI 10.1016/0021-8693(92)90043-L | MR 1194314
[5] Hadwin, D., Li, J.: Local derivations and local automorphisms on some algebras. J. Oper. Theory 60 (2008), 29-44. MR 2415555 | Zbl 1150.47024
[6] Herstein, I. N.: Jordan derivations of prime rings. Proc. Am. Math. Soc. 8 (1958), 1104-1110. DOI 10.1090/S0002-9939-1957-0095864-2 | MR 0095864 | Zbl 0216.07202
[7] Hvala, B.: Generalized derivations in rings. Commun. Algebra 26 (1998), 1147-1166. DOI 10.1080/00927879808826190 | MR 1612208 | Zbl 0899.16018
[8] Li, J., Pan, Z.: Annihilator-preserving maps, multipliers and local derivations. Linear Algebra Appl. 432 (2010), 5-13. MR 2566454
[9] Li, J., Pan, Z., Xu, H.: Characterizations of isomorphisms and derivations of some algebras. J. Math. Anal. Appl. 332 (2007), 1314-1322. DOI 10.1016/j.jmaa.2006.10.071 | MR 2324339 | Zbl 1126.47035
[10] Longstaff, W., Panaia, O.: $\Cal J$-subspace lattices and subspace $\Cal M$-bases. Stud. Math. 139 (2000), 197-212. MR 1762581
[11] Lu, F.: The Jordan structure of CSL algebras. Stud. Math. 190 (2009), 283-299. DOI 10.4064/sm190-3-3 | MR 2572431 | Zbl 1156.47058
[12] Nakajima, A.: Note on generalized Jordan derivations associated with Hochschild 2-cocycles of rings. Turk. J. Math. 30 (2006), 403-411. MR 2270836
[13] Nakajima, A.: On categorical properties of generalized derivations. Sci. Math. 2 (1999), 345-352. MR 1718278 | Zbl 0968.16018
[14] Samei, E.: Approximately local derivations. J. Lond. Math. Soc. 71 (2005), 759-778. DOI 10.1112/S0024610705006496 | MR 2132382 | Zbl 1072.47033
[15] Zhang, J.: Jordan derivations on nest algebras. Acta Math. Sin. 41 (1998), 205-212 Chinese. MR 1612539 | Zbl 1103.47315
[16] Zhang, J., Yu, W.: Jordan derivations of triangular algebras. Linear Algebra Appl. 419 (2006), 251-255. DOI 10.1016/j.laa.2006.04.015 | MR 2263119 | Zbl 1103.47026
Partner of
EuDML logo