Article
Keywords:
Novikov algebra; Novikov superalgebra; type $N$; type $S$
Summary:
Novikov superalgebras are related to quadratic conformal superalgebras which correspond to the Hamiltonian pairs and play a fundamental role in completely integrable systems. In this note we show that the Novikov superalgebras with $A_0=A_1A_1$ and $\dim A_1=2$ are of type $N$ and give a class of Novikov superalgebras of type $S$ with $A_0=A_1A_1$.
References:
[1] Balinskii, A. A., Novikov, S. P.:
Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Sov. Math. Dokl. 32 (1985), 228-231.
MR 0802121 |
Zbl 0606.58018
[2] Gel'fand, I. M., Dorfman, I. Ya.:
Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl. 13 (1980), 248-262.
DOI 10.1007/BF01078363 |
Zbl 0437.58009
[3] Gel'fand, I. M., Dorfman, I. Y.:
The Schouten brackets and Hamiltonian operators. Funct. Anal. Appl. 14 (1981), 223-226.
DOI 10.1007/BF01086188 |
MR 0583806
[5] Kac, V. G.:
Vertex Algebras for Beginners. University Lecture Series, 10. American Mathematical Society (AMS) Providence (1998).
MR 1651389
[8] Xu, X. P.:
Introduction to Vertex Operator Superalgebras and Their Modules. Kluwer Dordercht (1998).
MR 1656671 |
Zbl 0929.17030