Previous |  Up |  Next

Article

Keywords:
Novikov algebra; Novikov superalgebra; type $N$; type $S$
Summary:
Novikov superalgebras are related to quadratic conformal superalgebras which correspond to the Hamiltonian pairs and play a fundamental role in completely integrable systems. In this note we show that the Novikov superalgebras with $A_0=A_1A_1$ and $\dim A_1=2$ are of type $N$ and give a class of Novikov superalgebras of type $S$ with $A_0=A_1A_1$.
References:
[1] Balinskii, A. A., Novikov, S. P.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Sov. Math. Dokl. 32 (1985), 228-231. MR 0802121 | Zbl 0606.58018
[2] Gel'fand, I. M., Dorfman, I. Ya.: Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl. 13 (1980), 248-262. DOI 10.1007/BF01078363 | Zbl 0437.58009
[3] Gel'fand, I. M., Dorfman, I. Y.: The Schouten brackets and Hamiltonian operators. Funct. Anal. Appl. 14 (1981), 223-226. DOI 10.1007/BF01086188 | MR 0583806
[4] Gel'fand, I. M., Dorfman, I. Y.: Hamiltonian operators and infinite-dimensional Lie algebras. Funct. Anal. Appl. 15 (1982), 173-187. DOI 10.1007/BF01089922 | MR 0630337 | Zbl 0487.58008
[5] Kac, V. G.: Vertex Algebras for Beginners. University Lecture Series, 10. American Mathematical Society (AMS) Providence (1998). MR 1651389
[6] Kang, Y. F., Chen, Z. Q.: Novikov superalgebras in low dimensions. J. Nonlinear Math. Phys 16 (2009), 251-257. DOI 10.1142/S1402925109000212 | MR 2572473
[7] Xu, X. P.: Quadratic conformal superalgebras. J. Algebra 231 (2000), 1-38. DOI 10.1006/jabr.1999.8346 | MR 1779590 | Zbl 1001.17024
[8] Xu, X. P.: Introduction to Vertex Operator Superalgebras and Their Modules. Kluwer Dordercht (1998). MR 1656671 | Zbl 0929.17030
[9] Xu, X. P.: Hamiltonian operators and associative algebras with a derivation. Lett. Math. Phys. 33 (1995), 1-6. DOI 10.1007/BF00750806 | MR 1315250 | Zbl 0837.16034
[10] Xu, X. P.: Hamiltonian superoperators. J. Phys A. Math. Gen. 28 (1995), 1681-1698. MR 1338053 | Zbl 0852.58043
Partner of
EuDML logo