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Abstract. We investigate a new type of generalized derivations associated with Hochschild
2-cocycles which was introduced by A. Nakajima. We show that every generalized Jordan
derivation of this type from CSL algebras or von Neumann algebras into themselves is a gen-
eralized derivation under some reasonable conditions. We also study generalized derivable
mappings at zero point associated with Hochschild 2-cocycles on CSL algebras.
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1. INTRODUCTION

In [12], Nakajima introduces a new type of generalized derivations associated with
Hochschild 2-cocycles. The generalized derivations contain left multipliers, («, 3)-
derivations and another type of generalized derivations discussed in [1], [7], [13].
In [12], Nakajima shows that under certain conditions, every generalized Jordan
derivation is a generalized derivation. This result improves the results in [1], [6].
In [8], the first author and Pan consider the usual generalized derivable mappings
of CSL algebras at zero point and prove that these mappings are usual generalized
derivations. In this paper we study which algebras A have the following property:
Every generalized Jordan derivation on them is a generalized derivation. We also
consider generalized derivable mappings at zero point on CSL algebras.

Let A be an algebra over the complex field C, and let M be an A-bimodule. For
a bilinear mapping a: A x A — M, « is said to be a Hochschild 2-cocycle if

za(y, z) — alxy, 2) + a(z,yz) — a(z,y)z =0 for any z,y,z € A.

This work has been supported by the National Science Foundation of China.
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A linear mapping §: A — M is called a generalized derivation if there is a Hochschild
2-cocycle « such that

d(zy) = d(x)y + xd(y) + afx,y) for any z,y € A,
and ¢ is called a generalized Jordan derivation if
§(z%) = 6(x)x + 26(2) + a(z,z) for any x € A.

We denote it by (0, ). If & = 0, then they are the usual derivations and the Jordan
derivations, respectively. By examples in [12], we know that the usual generalized
derivations defined in [1], [7], [13], left centralizers and («, §)-derivations are gener-
alized derivations in the above sense.

In this paper, let H be a complex separable Hilbert space and let B(H) be the set
of all bounded operators on H. For convenience we disregard the distinction between
a closed subspace and the orthogonal projection onto it. If e, f are in H, then the
operator x — f(z)e = (z, f)e is denoted by e ® f. A subspace lattice on H is a
collection £ of subspaces of H with (0), H in £ and such that for every family {M,}
of elements of £, both (| M, and \/ M, belong to £, where \/ M, denotes the closed
linear span of {M,}. A totally ordered subspace lattice is called a nest. For a
subspace lattice £, we define alg £ by

algL ={T € B(H): TN C N for any N € L}.

A subspace lattice L is called a commutative subspace lattice (CSL) if it consists of
mutually commuting projections. If £ is a commutative subspace lattice, then alg £
is called a CSL algebra.

The paper is organized as follows.

In Section 2, motivated by [4], we show that every generalized Jordan derivation
of the above type from a von Neumann algebra A into any normed .A-bimodule M
is a generalized derivation under some reasonable conditions.

In Section 3, we generalize some results of [11] to generalized Jordan derivations.
We show that every generalized Jordan derivation of the above type from a CSL al-
gebra into itself is a generalized derivation under certain conditions.

In Section 4, we consider generalized derivable mappings at zero point associ-
ated with Hochschild 2-cocyles on CSL algebras and prove that these mappings are
generalized derivations.

The following lemma, due to Nakajima [12], will be used repeatedly.
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Lemma 1.1 [12, Lemma 2]. Let A be an algebra and M an A-bimodule. If
(f,a): A — M is a generalized Jordan derivation associated with a Hochschild
2-cocycle a, then the following relations hold:

(1) flzy +yz) = f@)y +2f(y) + olz,y) + )z +yf(2) + aly, 2),

(2) flayz) = f)yx + 2 f(y)x + 2y f(z) + zaly, z) + a(z, yz),

(3) flzyz + zyz) = f(o)yz + xf(y)z + ayf(2) + valy, 2) + alz,yz) + f(z)yz +
2f(y)z + 2y f(x) + zaly, 2) + alz, yz).

2. GENERALIZED JORDAN DERIVATIONS ASSOCIATED WITH HOCHSCHILD
2-COCYCLES ON VON NEUMANN ALGEBRAS

In what follows, we denote h(x,y) = §(zy) — é(x)y — xé(y) — a(z, y).

Lemma 2.1. Let (0,«) be a generalized Jordan derivation of an algebra A into
a 2-torsion free A-bimodule M. If A has a unit element 1 and h(x,y)l = 0, then
h(z,y) = 0.

Proof. By Lemma 1.1(2), for every a € A,
0(a) =d6(1lal) =d(1)a+ 16(a)l + ad(1) + la(a, 1) + a1, a).

Thus
d(zy) = d(1)xy + 16(ay)l + 2yo(1) + la(zy, 1) + a(1, zy).

By the assumption,

S(zy)l = d(x)y + 26(y)1 + a(z, y)1.

So

(2.1) O(zy) = 6(D)zy + 16(x)y + 29(y)1 + la(x, y)1
+zyd(1) + la(zy, 1) + a1, zy).

Similarly,

(2.2)  d(x)y+a0(y) + alz,y)
=(0(1)x + 16(x)1 + z6(1) + la(z, 1) + (1, 2))y
+z(6(D)y + 16(y)1 + y6(1) + la(y, 1) + a(l,y)) + a(z,y)
=0(xy 4+ 10(x)y + 26(1)y + la(z, 1)y + a(l,z)y + x6(1)y
+ 26(y)1 + zyd(1) + za(y, 1) + za(l,y) + a(z,y).
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Since
25(1)y = x(5(1)1 4+ 16(1) + a(1,1))y = 225(1)y + za(1, 1)y,

it follows that
(2.3) xé(l)y = —za(l, 1)y.
By (2.1), (2.2) and (2.3), we have

h(z,y) = la(z,y)l + la(zy, 1) + (1, zy) + 2za(1, 1)y — la(z, 1)y
—a(l,z)y — za(y, 1) — za(l,y) — alx,y)
=2za(l, )y — la(z, )y — za(l,y) + (a(z,y)1
+a(zy, 1) — za(y, 1) — a(z,y))
=2za(l, )y — a(z, 1)y — za(l,y)
=z(lo(l,y) —a(l,y) + (—a(z, 1) + a(z,1)1)y = 0.

This completes the proof. O

Lemma 2.2. Let (0,«) be a generalized Jordan derivation of an algebra A into
a 2-torsion free and 3-torsion free A-bimodule M. Then

h(d,c)Ala,b)Ala, b)Ala, b]Ala,b] = 0

for any a,b,c,d € A.

Proof. By [12, Lemma 4], we have
(2.4) h(z, y)z[z, y] + [z, y]zh(z,y) =0
for any z,y, z € A. Replacing z by z[a, bly, we obtain
[a, blz[a, blyh(a,b) = —h(a,b)z]a, bly[a, b].
Using (2.4) twice yields
[a, b]z([a, blyh(a, b)) = —a, blxh(a,b)yla, b] = h(a,b)z|a, bly|a, b].
Thus 2h(a, b)z|a, bly[a,b] = 0. Since M is 2-torsion free, it follows that
(2.5) h(a,b)z[a,bly[a,b] = 0.
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In (2.5), replacing b by b + nc, we arrive at

0 = h(a,b+ nc)xfa, b+ ncjyla, b+ nc
= h(a, b)zfa, blyla, b] + n(h(a, b)z[a, bly[a, c| + h(a, b)z[a, c|yla, D]

+ h(a, c)zla, blyla, b]) +n*(h(a, b)a[a, clyla, ] + h(a, c)z[a, blya, ]
+ h(a, c)xla, clyla, b]) +n*h(a, c)zla, cJyla, c]
= n(h(a,b)zla, blyla, c] + h(a, b)z[a, cly[a, b] + h(a, c)z[a, b]y[a, b])
+n?(h(a,b)z[a, cJyla, c] + h(a,c)x[a, bly[a, c] + h(a, c)z[a, c]y[a, b]).
Let n =1 and then n = —1; comparing the two relations, we obtain

(26)  h(a,b)z[a,blyla, c] + h(a,b)x]a, clya, b] + h(a, c)za, bly[a, b] = 0.
Multiplying both sides of (2.6) by z[a, b], and using (2.5), we obtain that
(2.7) h(a, c)z[a, blyla, b]z]a, b] = 0.

Replacing a by a + nd in (2.7), taking successively n = 1, n = —1 and n = 2 and
comparing these equations, we obtain

(2.8)  h(d, c)zla, bly[a, c|z]a, b] + h(a, c)z[d, bly|a, b] 2[a, b]
+ h(a, ¢)z[a, bly[d, b]z[a, b] + h(a, c)z[a, bly[a, b]z[d, b] = 0.

Multiplying both sides of (2.8) by w[a, b], we conclude from (2.7) that
h(d, ¢)x[a,bly[a, b]z[a, bjw|a, b] = 0.

This completes the proof. (I
Let I([A, A]™) denote the ideal of A generated by all [a,b]", a,b € A.

Lemma 2.3 [4, Lemma 4]. Let A be a C*-algebra with a unit element. Then
I([A, A]™) = A for each positive integer n if and only if there are no multiplicative
linear functionals on A. In particular, a von Neumann algebra with no abelian central
summands has this property.

Let A be a *-algebra, P4 the set of all projections in A, and H 4 the set of all
self-adjoint elements in A. By D 4 we denote the set of those elements in A which can
be represented as finite real-linear combinations of mutually orthogonal projections.
Thus we have P4 C D4 C Hy4. If A is a von Neumann algebra, D 4 is norm dense
in H_A.

913



Theorem 2.4. Let A be a von Neumann algebra and let M be a normed A-
bimodule. If (0, «) is a generalized Jordan derivation such that ¢ is norm continuous
and « is norm continuous in the first component, then (9, «) is a generalized deriva-
tion.

Proof. By Lemma 2.2,
(2.9) h(z,y)I([A, A*) =0 for any =,y € A.

Let p be a central projection in A such that p.A is of type I; and (1 —p).A contains no
abelian central summands. By Lemma 2.3, 1 — p € I([A, A]*). It follows from (2.9)
that

(2.10) h(z,y)(1 —p)=0 for any x,y € A.

In the following, we prove that h(z,y)p = 0. Let x € A, ¢ € P,NpA. By
Lemma 1.1(2),

0(qz) = 6(qzq) = 6(q)xq + qd(x)q + qxd(q) + qa(z, q) + a(q, xq).

Since 6(q) = d(¢%) = d(q)q + qd(q) + alq, q), it follows that ¢d(q)q = —qa(q, q)q-
Thus

qxd(q)q = 2q0(q)q = —rqa(q, q)q.
So

8(qz)q = 6(q)zq® + ¢6(x)q* + qx6(q)q + qa(z, ¢)qg + (g, zq)q
5(q)zq + qd(x)q — (g, q) — a(zq, q) + a(zq, q)q)q
+ (algz, @) + a(g, 7)q)q

= 6(q)zq + qd(z)q + a(q, z)q.

Hence h(q,z)qg = 0 for any x € A, ¢ € P4NpA. Replacing ¢ by p — ¢, we obtain
h(p,x)p — h(p,z)q — h(q,x)p + h(g,z)g = 0. Since h(q,x)q = 0, h(p,x)p = 0 and
q € P4NpA, it follows that h(p,z)q = h(p,xz)pg = 0. Thus

(2.11) h(g,z)p = —h(p,z)q = 0.

By (2.10) and (2.11) we have that h(g,z)1 = 0. It follows from Lemma 2.1 that
h(q,z) = 0. Thus
6(gr) = 6(q)z + q0(x) + a(q, z)
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for any z € A, g € P4 NpA. Hence if z € A, u € pA and u is a linear combination
of projections in pA, then

d(uz) = 0(uw)z + ud(z) + au, ).

Since the set of all such elements is norm dense in p.A, ¢ is norm continuous and « is
norm continuous in the first component, it follows that

0(cx) = d(c)x + cd(z) + alc, x)
for any « € A, ¢ € pA. By Lemma 1.1 (1),
0(zc) = §(x)e+ xd(c) + a(z, c)
for any z € A, c € pA. For any z,y € A, since yp € pA, we have

d(zyp)
d(zyp)

(zy)p + xyd(p) + a(zy,p),
(z)yp + 20(yp) + oz, yp)
(
(

z)yp +x(6(y)p + yo(p) + a(y,p)) + a(z,yp)
z)yp + x0(y)p + vyd(p) + va(y, p) + a(z, yp).

0
0
]
]

Thus

(0(zy) = 6(x)y — xd(y) — al,y))p = za(y, p) + o, yp) — ey, p) — afz,y)p = 0.
Hence

(2.12) h(z,y)p = 0.

It follows from (2.10) and (2.12) that h(z,y)l = 0. By Lemma 2.1, h(z,y) =0. O

3. GENERALIZED JORDAN DERIVATIONS ASSOCIATED WITH HOCHSCHILD
2-COCYCLES ON CSL ALGEBRAS

For a CSL £ on H, let Q1 be the projection onto the closure of the linear span
{PAP+(H): P€ L, A€ algL} and let Q> be the projection onto the closure of the
linear span {PTA*P(H): P € L, A€ algL}. Then

Qi el and Q,€ L.
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Lemma 3.1. Let £ be a CSL on H and let (6, ) be a generalized Jordan deriva-
tion from alg L into itself. If Q1(H)V Q2(H) = H, then (0,«a) is a generalized
derivation.

Proof. Forevery E € L, since 6(E) = §(E?) = 6(E)E + ES(E) + o(E, E), we
have that

ES(E)E = —FEa(E,E)E, E*§(E)E* = E*a(E,E)E™ .

So
§(E) = ES(E)E* + E*a(E,E)E*+ — Ea(E,E)E.

For every T € alg £, by Lemma 1.1 (1),

§(ETE*) = §(EETE* + ETE*E)
= —o(E,E)ETE* + ES(ETEY) + o(E,ETEY) + §(ETEY)E
+ ETE*o(E,E) + o(ETE*, E).

Since
ETE*o(E,E) + «(ETE*,E) — o(ETE*,E)E =0

and
Eo(E,ETE') — o(E,ETE") + a(E,ETE") — o(E, E)ETE*+ =0,
we have that
S(ETE*) = Eto(E,ETE*Y) + ES(ETE!) 4+ 6(ETEY)E + o(ETE*, E)E.
Thus
ES(ETE*)E = — Ea(ETE™*,E)E,
EY§(ETEY)E! = E+o(E, ETE)E*.

Hence
S§(ETE*Y) = E§(ETE*Y)E* + E*o(E, ETEY)E*+ — E(ETE*,E)E.
By Lemma 1.1(2),
S(ETE) =§(E)TE + E§(T)E + ETS(E) + Ea(T, E) + o(E,TE).

So
E+$(ETE) = E*+a(E, ETE).

916



For any S,T € alg L, we have

(3.1) O0(SETE'Y)=6(ESEETE* + ETE*ESE)
= §(ESE)ETE"* + ESES(ETE™") + o(ESE, ETE")
+ 6(ETE)ESE + ETE*§(ESE) + o(ETE*, ESE)
= §(S)ETE* + S§(ETE™)
+ [~a(E, E)SETE™* + o(E, SE)ETE*]
+ [~Sa(E, E)ETE* + o(S, E)ETE*
— SE*+a(E,ETE*)E* + o(SE, ETE")]
+ [~a(ETE*,E)ESE + ETE*o(E, ESE™)
+a(ETE*, ESE)].

(a) By virtue of
(Ea(E,SE) — o(E,SE) + a(E, ESE) — o(E, E)SE)ETE* =0,
it follows that
—a(E,E)SETE* + o(E,SE)ETE* = 0.
(b) Since Ea(ETE*,E) — a(ETE*,E) — o(E,ETE+)E = 0, it follows that
Sa(E,ETEY)E = SEa(E, ETEY)E = 0. Further,
(SE*a(E, ETE*) + o(SE*, ETE*) — o(SE*, E)ETEY)E* =0,
implies that

—Sa(E,E)ETE* + (S, E)ETE*+ — SE+a(E, ETEY)E*
+ a(SE, ETE™Y)
= — Sa(E,E)ETE* + o(SE,E)ETE*
+a(SE*, ETEY)EY + o(SE, ETE")
= (a(S,E) — oS, E)E)ETE* + (S, ETEX)E* + o(SE, ETE)E
oS, ETEH)EY 4+ Sa(E, ETEY)E + oS, ETEY)E
oS, ETE*) 4+ Sa(E, ETEX)E = o(S, ETE").

(c) Since

ETE*a(E,ESE) — o(ETE*E,ESE) + o(ETE*, ESE)
—a(ETE*,E)ESE =0,
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we have
ETE*a(E,ESE) + o(ETE*,ESE) — o(ETE*, E)ESE = 0.
By (a), (b), (c) and (3.1),
(3.2) §(SETE™) = §(S)ETE™* + S§(ETE*) + o(S, ETE™).
Similarly, we have
(3.3) S(ESE*T) = 6(ESE-)T + ESE*S(T) + a(ESE*L, T).
For any A, B,T € alg L we have

S(ABETE™Y) = 6(AB)ETE™* + ABS(ETE™) + o(AB, ETE"),
S(ABETE™*) = 6(A)BETE™* + ABS(ETE™") + A§(B)ETE*
+ Aa(B, ETE*) + o(A, BETE™).

So

S(AB)ETE* — 6(A)BETE+ — A5(B)ETE+
®(AB,ETE*Y) — a(A, BETE*) — Aa(B,ETE") = 0.

Since « is a Hochschild 2-cocycle, we conclude that
(6(AB) — 6(A)B — A§(B) — a(A, B))ETE* = 0.

So

(3.4) (6(AB) — 6(A)B — A3(B) — (A, B))Q, = 0.

For A* € alg £ define §*(A*) = (§(A))* and a*(A4*, B*) = (a(B, A))*. If A* €
alg £, then

0 (A™%) = (8(A%)" = (O(A)A + A5(A) +a(4, 4))

= A"(6(A))" + (6(A))" A" + (a4, A))*
= AT0T (A7) + 07 (AT A + a” (A, A7),

Proceeding similarly to the proof of (3.4), we can show that
(3.5) Q2(6(AB) — 6(A)B — Aé(B) — (A, B)) = 0.
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Define A(T) = §(T) — (T'6(Q1) — 6(Q1)T) for any T € alg L. Then (A, «) is also
a generalized Jordan derivation. Since §(Q;) = Q16(Q1)Q7 + Qi a(Q1,Q1)Q1 —
Q10(Q1,Q1)Q1, we have

A(Q1) = 0(Q1) — (Q16(Q1) — 6(Q1)Q1)
= Q1 a(Q1,Q1)Q1 — Q1a(Q1,Q1)Q1.

For any T € alg L, by virtue of Q1 € L,

A(TQ1) = A(T)Q1 — a(Q1,Q1)TQ1 + Q1 TQTa(Q1,Q1)Q7
- Ta(@la QI)QI + Qla(Ta Ql) + Q(Ql, TQl)

So

(3.6)  A(TQ1)QF = 1TQTa(Q1,Q1)QT + Q1a(T, Q1)Q7 + a(Q1,TQ1)QT
= QiTQTa(Q1,Q1)Q1 + (1T, Q1) + a(Q1, T)Q1) QT
=a(@Qi1TQ1,Q1)Q7 = a(TQ1,Q1)Q7 .

Therefore,

(3.7) (A(ABQ1) — A(A)BQ1 — AA(BQ1) — a(A, BQ1))Q7
= a(ABQ1,Q1)Qi — Aa(BQ1,Q1)Q1 — a(A, BQ1)Qt
= —a(4,BQ1)Q1Q1 =0.

By (3.4) and (3.7),
(3.8) A(ABQ1) = A(A)BQ, + AA(BQ1) + a(A, BQ,).
Since A(Q7) = A(QP)QT + QT A(QL) + (@1, Q1), we have
QAQT)Q1 = Q1a(Q7, Q1)@

and
Q1 AQ1)Q1 = —Q1a(Q1,Q1)Qr
Thus
AQy) = @1AQD)QT + @1a(Q7, Q1)Q1 — Q1 a(Q1, Q)R -
By Lemma 1.1(2),

(3.9) QIAQT) = QAQITQY) = QiA(QT)T Q1 + Q1a(Q1, TQY).
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For any A, B € alg £ we have

(3.10) Q1(A(Q AB) — A(QT A)B — Q7 AA(B) — a(Q1 A, B))
= Q1a(Q1, AQT BQY)
— Q1(Q1 (AQT, B) + a(Q7, AQ7 B))
= — Q1a(Q1, AQT BQ1) = —Q1a(Q7,0) = 0.

Since Q1(H) V Q2(H) = H, it follows from (3.5) and (3.10) that
(3.11) A(Qi AB) = A(Q1 A)B + Q1 AA(B) + (Q1 A, B).
Also, by (3.2) and (3.3),

(3.12)  A(AQ1BQT) = A(A)Q1BQT + AA(Q1BQT) + a(A, Q1 BQY),
(3.13) A(Q1AQTB) = A(Q1AQT)B + Q1AQTA(B) + a(Q1AQ7, B).

Let h(A,B) = A(AB) — A(A)B — AA(B) — a(A,B), A,B € algL. It follows
from (3.8), (3.11), (3.12), and (3.13) that

h(A, BQ1) = h(Q1 A, B) = h(A,Q1BQ1) = h(Q14Q1, B) = 0.
Thus
(3.14) h(A,Q1B) = h(AQ7,B) = 0.
By (3.6), (3.9) and (3.14) we have
h(A, B) = h(A,Q1 B) + h(A,Q1B) = h(AQ1, Q1 B) + h(AQ1, Q1 B)

= —a(4Q1,Q1)Q1 B — AQ1A(Q7)BQT — AQa(Q1, BQY)
—a(AQ1,Q7 B).
Since
AQ10(Q1, BQT) + a(AQ1, Q1 BQT) — a(AQ1, Q1 )BQY =0,

we conclude that

— a(AQ1, Q1 BQy) — a(AQ1,Q1)Q1 B

— a(AQ1,Q1)BQT — a(AQ1,Q1)Q1 BQY
= — (a(AQ1, Q1) + a(AQ1,Q1)QT)BQT
= — (AQ1a(Q1, Q1) + a(AQ1,Q:1Q7))BQy
= - AQM(Qth)BQf

—AQ10(Q1, BQY)

(%
(%
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Thus
h(A, B) = h(AQ1, Qi B)

= — AQ:1A(QT)BQi — AQ1a(Q1,Q1)BQY
— AQiAQT) + Q1a(Q1, Q1)) BQY.
Since A(I) = 6(I) = —a(I,I), we have

AQT) = A1) = A(Q1) = —a(I, 1) — Q1 a(Q1,Q1)Q71 + Q1(Q1, Q1) Q1.

Thus QlA(Qf) = —Qia(l,I) + Q1a(Q1,Q1)Q1. Since Qra(l,I) — a(Q1,I) +
a(Q1,1) — a(Q1,I) =0, it follows that

Qia(I, 1) = Q1@Qra(l,I) = Q1a(Q1, I).

So
Q1AQ7) = —Q1a(Q1, I) + a(Q1, Q1) Q1.

Thus

WA, B) = — A(Q1(Q1,Q7) — Q1a(Q1, 1) + (Q1,Q1)Q1) BQY
= A(Q1a(Q1, Q1) — a(Q1,Q1)Q1)BQT
= A(a(Q3,Q1) — (Q1,Q7))BQy = 0.

Hence, (A, «) is a generalized derivation and (0, ) is a generalized derivation. [

Proceeding similarly to the proof of Lemma 3.1, we can show the following result.

Lemma 3.2. Suppose that £ is a CSL on H. Let G = Q1(H)V Q2(H). If
(0,0) is a generalized Jordan derivation from G(alg £)G into alg L, then (J,«a) is a
generalized derivation.

Theorem 3.3. Suppose that £ is a CSL on H. If (§,«) is a generalized Jor-
dan derivation from alg £ into alg £ such that § is norm continuous and « is norm
continuous in the first component, then (9, «) is a generalized derivation.

Proof. We divide the proof into two cases.

Case 1: Q1V Qo =1.

It follows from Lemma 3.1 that (4, «) is a generalized derivation.

Case 2: G=Q1VQa#1.

By [11, Lemma 1.1], we have that G € £ N L+ and (alg£)G+ C £'. Hence
G*(alg £)G* is a von Neumann algebra and

alg £ = alg(GLG) @ alg(GHLG™).
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Define 61 = 6laiggec and 62 = 6|ygcioer. By Lemma 3.2, (61, ) is a general-
ized derivation. Since d is norm continuous, it follows that o is norm continuous.
Since G*(alg £)G* is a von Neumann algebra and « is norm continuous in the first
component, Theorem 2.4 yields that (2, @) is a generalized derivation.

Thus for any A, B € alg L,

(3.15) §(ABG) = §(GAGGBG)
= §(GAG)GBG + GAGS(GBG) + a(GAG, GBG)
= §(AG)BG + AG3(BG) + a(AG, BG),

(3.16) §(ABGt) = §(GHAG+G*BGH)
= §(G+AGH)G*BG* + GHAGHS(GHBGH)

+ a(GtAG*, Gt BGH)
= §(AGH)BG* + AG*5(BG*) + a(AG*, BG1).

By Lemma 1.1, for any A € alg L,

GH(GAG)G* = GH(3(G)AG + G3(A)G + GAS(G) + Ga(A, G) + a(G, AG))G+
=Gta(G,AG)GH,
G6(GHAGH)G = G(6(GH)AGH + GH6(A)GH + GHAS(GL) + GHa(A,Gh)
+ (G, AGH))G
= Ga(G*, AGH)G.

Thus for any A, B € alg £, it follows from (alg £)G+ C £’ that

(3.17) 6(AG)BG* + AGS(BG*) + a(AG, BG™)
= 0(GAG)G*BG* + GAGS(G*FBG*) + o(GAG, G+ BG™)
= a(G, AG)G*BG* 4 o(GAG, GH)BG*

= (Ga(AG,G*) 4 o(G, AGGH))BG+ =0,

(3.18) §(AGH)BG + AG*§(BG) + a(AG*, BG)
= 6(G*AGH)GBG + G AG*§(GBG) + (G AG*H, GBG)
= a(G*, AGH)GBG + o(G+AG+,G)BG
= Gta(AG*,G)BG = 0.

By (3.15), (3.16), (3.17), and (3.18), we have that for any A, B € alg L,
§(AB) =0(A)B + A§(B) + a(A, B).
This completes the proof. O
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In [15], Zhang showed that for a nest algebra A, every (,0) generalized Jordan
derivation on A is a (6,0) derivation. In [11, Theorem 2.3], Lu proved that for a
CSL algebra A, Zhang’s result is true.

4. GENERALIZED DERIVABLE MAPPINGS AT ZERO POINT ASSOCIATED WITH
HOCHSCHILD 2-COCYCLES ON CSL ALGEBRAS

We call a linear mapping : A — M a generalized derivable mapping at zero
point if there is a Hochschild 2-cocycle a: A x A — M such that §(A)B + Ad(B) +
a(A,B) =0 for all A,B € A with AB =0.

Lemma 4.1. Let A be a unital algebra and M a unital A-bimodule. If § is a
linear mapping from A into M and « is a Hochschild 2-cocycle mapping from A x A
into M such that 6(A)B + Ad(B)+ «(A,B) =0 for all A, B € A with AB = 0, then
for any idempotent P in A and A € A,

(i) 0(PA) =0(P)A+ PS(A) +a(P,A) — P(6(I) + a(I,1))A,
(ii) 6(AP) =0(A)P + AS(P) + (A, P) — A(6(I) + (I, 1)) P,
(ili) PS(P)P = P(5(I) + a(I,I))P — Pa(P,P)P = P(5(I) + a(I,I)) — Pa(P,P) =

(0(I)+ a(L,I))P —a(P,P)P.

Proof. (iii) For any P = P% € A,

(41)  0=6(P(I—P))

(P)(I — P)+PS(I—P)+a(P,I—-P)
(P) = 5(P)P + P§(I) - P§(P) + a(P,I - P),
(I— P)P+ (I — P)o(P) +a(l — P,P)
(I)P — §(P)P + §(P) — P§(P) +a(I — P, P).

(4.2)  0=26((I - P)P)

3 S &9 O

By (4.1) and (4.2) we have

P§(P)P = P§(I) + Pa(P,I — P) = P(§(I) + o(I, 1)) — Pa(P, P),
PS§(P)P = P§(I)P + o(P,I — P)P = P(5(I) + (I, 1)) P — a(P, P)P,
P§(P)P = §(I)P + (I — P,P)P = ((I) + (I, 1))P — a( P, P)P.

(4.1) minus (4.2) together with the above equations yields

PS(I) + a(P,I) = 5(I)P + o(I, P).
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(i) Using

(I — PYPA) = 6(I — P)PA+ (I — P)§(PA) + (I — P, PA)
(I)PA — 5(P)PA + 6(PA) — PS(PA) + (I, PA) — a(P, PA),
(

(

P(I — P)A) = 6(P)(I — P)A+ P5((I — P)A) + a(P, (I — P)A)

5
5
5
§(P)A — §(P)PA + P§(A) — P§(PA) + a(P, A) — a(P, PA),

(-
)A

we arrive at
0(PA) =0(P)A+ P6(A) + a(P,A) —0(I)PA — (I, PA)
=06(P)A+ P6(A)+ (P, A) — P6(INA — (P, 1)A
+a(l,P)A— (I, PA).

Since
Pa(I,I)— (P, I)+ (P I)—a(P,I)=0,

a(P,A) —a(P,A) + a(I,PA) — a(l,P)A =0,
it follows that
§(PA) =96(P)A+ P§(A) + a(P,A) — P6S(I)A — Pa(I,I)A.
(i) By virtue of
0=0(AP(I — P)) =6(AP)(I — P)+ APS(I — P)+ o(AP,I — P)
=(AP) —6(AP)P + APS(I) — APS(P) + a(AP,I)
— a(AP, P),
0= 3(A(I — P)P) = 6(A(I — P))P+ A(I - P)5(P) + a(A(I - P), P)
=0(A)P — 6(AP)P + AS(P) — APO(P) + a(A, P)

— a(AP, P),
we obtain
5(AP) = 6(A)P + AS(P) + (A, P) — APS(I) — o(AP,I)
= §(A)P + AS(P) + a(A, P) — AS(I)P — Aa(I, P)
+ Aa(P,I) — a(AP,I).
Since

a(l,P)—a(l,P)+a(l,P)—a(l,I)P =0,
Aa(P,I) — a(AP,I) 4+ a(A, P) — (A, P) =0,
we conclude that

5(AP) = 5(A)P + AS(P) + a(A, P) — AS(I)P — Aa(I,I)P.

This completes the proof.
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Corollary 4.2. Let 6, o, A, M be as in Lemma 4.1 with 6(I) = —a(I,I). Then
for any idempotent P in A and any A € A,

(i) 6(PA) = 5(P)A + P5(A) + (P, A),
(i) 5(AP) = 5(A)P + A5(P) + a(A, P),
(ili) P§(P)P = —Pa(P, P)P.

Corollary 4.3. Let §, o, A, M be as in Lemma 4.1 with 6(I) = —a(1,I).
Suppose that B is the subalgebra of A generated by all idempotents in A. Then for
any T € B and any A € A,

(1) 8(TA) =6(TYA+TH(A) + (T, A),
(ii) §(AT) =6(A)T + AS(T) + (A, T).

Proof. (i) We need to show that

If n = 1, then by Corollary 4.2, (4.3) is obvious.
Suppose that if n = k, then (4.3) is true. For n = k + 1,

S(Py...PePoi1A) =0(Pr... Po)Pos1 A+ Pr ... Pud(Pri1A)

+a(Py ... Py, Pt A)

= (8(Py...Pos1) — P ... Pud(Pos1) — Py ... Py, Prs1))A
4+ P Pu(6(Pys1)A + Poy10(A) + Py, A))
+a(Py ... Py, PriiA)

=6(Py...Poy1)A+ Pr... Pos16(A) + Py ... Poca(Pps1, A)
4Py ... Pe,Poy1A) — a(Py ... Py, Pry1)A

= 6(Py...Poy1)A+Pr.. . Pos16(A) + a(Pr... Py, A).

Similarly, we can prove (ii). O

We say that a subset S of A separates M from the left, if for any T € M, ST = {0}
implies T' = 0. Similarly, we say S separates M from the right, if for any T € M,
TS = {0} implies T' = 0. We say S separates M if S separates M both from the
left and from the right.
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Theorem 4.4. Let §, o, A, M be as in Corollary 4.3. Suppose that A contains
a left (right) ideal Z that separates M from the right (from the left, respectively). If
7 is contained in the subalgebra of A generated by all idempotents in A, then (§, «)
is a generalized derivation.

Proof. We only prove the case that Z is a left ideal of A and Z separates M
from the right; the other case is similar.
For any A, B € A and S € Z, Corollary 4.3 implies that

8(ABS) =6((AB)S) = 6(AB)S + AB4(S) + a(AB, S),
5(ABS) = §(A(BS)) = 6(A)BS + A§(BS) + a(A, BS)
§(A)BS + A6(B)S + ABS(S) + Aa(B, S) + a(A, BS).

(4.4) (0(AB) — A§(B) — 6(A)B — a(4, B))S
= Aa(B,S) — a(AB,S) + a(A,BS) — a(A, B)S = 0.

Since Z separates M from the right, it follows by (4.4) that
5(AB) — A§(B) — §(A)B — a(A,B) = 0.
This completes the proof. O

Corollary 4.5. Suppose that A is a unital Banach subalgebra of B(H) such that
either A contains {x® fo: © € H}, where0 # fo € H, or {zo®f: f € H}, where0 #
xo € H. If6: A— B(H) is a linear mapping and o.: Ax A — B(H) is a Hochschild
2-cocycle mapping such that 6(I) = —a(I,I) and 6(A)B + Aé(B) + (A, B) =0 for
all A,B € A with AB =0, then (4, «) is a generalized derivation.

Remarks.
1. Suppose that £ is a subspace lattice and A = M = alg L. If £ satisfies one of
the conditions
(i) £ is a J-subspace lattice on X,
(ii) L satisfies 04 # 0 and H_ # H,
(iii) £ is a completely distributive CSL on H,

then alg £ has an ideal Z which is contained in a subalgebra of alg £ generated by
its idempotents and 7 separates M.
2. If A is a unital algebra, then by [5, Proposition 2.2], for 2 < n, M,(A) is
generated by its idempotents.
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Theorem 4.6. Suppose that L is a CSL on H. Let § be a norm continuous
linear mapping from alg £ into B(H) and let « be a norm continuous Hochschild
2-cocycle mapping in the first component from alg L x alg £ into B(H) such that
(I) = —a(l,I) and §(A)B + A§(B) + a(A,B) = 0 for all A,B € A with AB = 0.
Then (4, o) is a generalized derivation.

Proof. Define T = span{P(algL)P+: P € £}. Then 7T is an ideal of alg L.
Since PTP+ = P— (P — PTP%) and P — PT P~ is an idempotent in alg £, we have
that every element in 7 is a linear combination of idempotents in alg L. Let @1 be
the projection onto the closure of the linear span of {PTPY*H: P € L, T € alg L}
and let Q2 be the projection onto the closure of the linear span of {P*T*PH: P €
L, T €algL}. Thus

QreLCL =alglLn(algL)*

and

Qu €Lt C L =algln (algL)"

Let Q = Q1 V Q2. By [11, Lemma 1.1], Q € £LN L+ and (alg £)Q+ C £'. Hence
Q-+ alg LQ+ is a von Neumann algebra and alg £ can be written as the direct sum
alg £ = alg(QLQ) ® alg(Q-LQT). Let 6 = b1 + b2, where 61 = Olagqro) and
02 = Olaig(qLLqL)-

Claim 1. (01, @) is a generalized derivation.

Since 7 is an ideal of A generated by idempotents in A, it follows from Corollary 4.3
that for any A, B,T € algL, P € L,

S(ABPTP') = §(AB)PTP* + ABS(PTP*) 4+ o(AB, PTP™)
§(ABPTP*) = §(A)BPTP+ + AS(BPTP*) + a(A, BPTP+)
= 0(A)BPTP*+ + A5(B)PTP* + ABS(PTP')

+ Aa(B, PTP*) + (A, BPTPY).

So
(§(AB) — §(A)B — A§(B) — oA, B))PTP+
= Aa(B, PTPtY) — a(AB, PTPY) + a(A, BPTPY)
—a(A, B)PTP* =0.
Thus
(4.5) (6(AB) — 6(A)B — A§(B) — a(A, B))Q, = 0.
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Define §*(A*) = (§(A))*, a*(A*, B*) = (a(B, A))* for any A*,B* € algLt. If
A* B* € alg L+ and A*B* =0, then A, B € alg £ and BA = 0. Moreover,

§*(A*B*) = (5(BA))* = (6(B)A + Ba(B, A))*
= A™(6(B))" + (6(A))"B" + (a(B, A))"
= A" (B*) + §*(A*)B* + o* (A", BY).

Combining this with an argument similar to the proof of (4.5), we can obtain
(4.6) Q2(6(AB) — 6(A)B — Aé(B) — (A, B)) = 0.
By Corollary 4.3, 6(Q1) = 6(Q1)Q1 + Q10(Q1) + (Q1,Q1). Thus

Q16(Q1)Q1 = —Q1a(Q1,Q1)Q1,
16(Q1)Q1 = Q1 a(Q1,Q1)Q7.

Let A(A) =3(A) — (A6(Q1) — 6(Q1)A) for any A € alg L. If AB =0, then

=0(A)B + Ad(B) + (A, B)

= (6(A) — (A6(Q1) —6(Q1)A))B

+ A(8(B) — (Bd(Q1) — 6(Q1)B)) + (A, B)
= A(A)B + AA(B) + o(A, B)

—~

and A(J) =6(I) = —a(I,I). We also have

A(Q1) = 0(Q1) — (Q15(Q1) — 6(Q1)@1)
=8(Q1) — Q18(Q1)Q1
= Q16(Q1)@1 -FQf‘S(Q1)Q1l
= —Q1a(Q1,Q1)Q1 + Q1 a(Q1, Q1) Q7.

By Corollary 4.3,

A(AQq) = A(A)Q1 + AA(Q1) + a(A, Q1),
=A(A)Q1 — AQ1a(Q1,Q1)Q1 + AQT a(Q1, Q1)Q7 + a(A, Q1),

(4.7) A(AQ1)QT = AQT a(Q1,Q1)Q7 + a4, Q1)Q1
= - OC(AQ%, Ql)@f + a(Av QI)Q%
= a(AQ1,Q1)Q7 -
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Thus

(4.8) (A(ABQq) — A(A)BQ: — AA(BQ1) — a(A, BQ1))Qt

= a(ABQ1,Q1)Q1 — Aa(BQ1,Q1)Qf — (A, BQ1)Qf = 0.

By (4.5),

(4.9) (A(ABQ1) — A(A)BQ1 — AA(BQ1) — a(A, BQ1))Q1 = 0.
It follows from (4.8) and (4.9) that

(4.10) A(ABQ,) — A(A)BQ, — AA(BQ)) — a(A, BQ) = 0.
By Corollary 4.3, we have

A(Qr) = AQD)QT + QT AQY) + (@1, Q1).
So
Q1A(Q7)Q1 = Q1a(Q7, Q1)@
Thus
AQ1) = @1AQDQT + @1a(Q7, Q1)Q1 — Q1 a(Q1, Q)R-
Corollary 4.3 yields

A(QTA) = A(QT)A+ QT A(A) + Q7 , A)
= Q1AQT)QT A+ Q1a(Q1, Q7)1 A
— Q1 a(Q1, Q1)QT A+ QT A(A) + a(Q7, A).

Then we have that

(4.11) QAT A)
= Q1AQ1)QT A+ Q1a(Q1, Q1)Q1A + Q1(Q7, A)
= Q1AQT)QT A+ Q1(Q7, A)
+ Q1(Q1 (@, Q14) — a(Q1,Q1A) + (Q7, Q1 Q1 4))
= Q1AQ1)QT A+ Q1(Q1, Q1 A).
Thus

(412)  Qu(A(QTAB) — AQf A)B — Q AA(B) — o(Q1 A, B))
= QiA(QT)QTAB + Q1a(Q1, Q1 AB)
— Q1AQT)QT AB — Q10(Q1, Q1 A)B — Q1e(Qi A, B)
= —Q1Q1a(QTA B) =0.
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By (4.6),

(4.13) Q2(A(Q1 AB) — A(Q A)B — QF AA(B) — a(Q A, B)) = 0.
Since Q@ = Q1 V Qo, it follows from (4.12) and (4.13) that

(414)  Q(A(QTAB) - A(QrA)B = QT AA(B) — a(Qy A, B)) = 0.

For any A, B € Q(alg £)Q, since (Q1Q)? = Q1 Q, it follows from Corollary 4.3
that

(415) Q" (A(QTAB) — A(Qi A)B — Q1 AA(B) — a(Q1 A, B))
= QT (A(QTQ)AB + Qf QA(AB) + a(Q1 Q, AB))
— QM (AQT QA+ QT QA(A) +a(QfQ, A)B
- Q" a(Q1 A, B)
= Q1 a(QTQ,AB) — Q*a(Q1Q, A)B — Q*a(Qt A, B)
= QleQa(A, B)=0.

By (4.14) and (4.15) we have
(4.16) A(QrAB) — A(QT A)B — Q1 AA(B) — a(Q1 A, B) =0

for any A, B € Q(alg £)Q.
Let h(z,y) = A(zy) — A(z)y — zA(y) — a(z,y) for any z,y € alg L. By (4.10),
(4.16), and Corollary 4.3,

h(Aa BQI) = h(Aa QlBQf—) = h(QlAQf_v B) = Oa Av B e alg ‘Cv
h(QrA,B) =0, A BeQ(algl)Q.

Thus
h(A,Q1B) = h(AQ{,B) =0, for any A, B € Q(algL)Q.

For any A, B € Q(alg £)Q, it follows from (4.7) and (4.11) that

h(A, B) = h(A,Q1 B) + h(A,Q1B) = h(A, Qi B)
= h(AQ1, Q1 B) + h(AQ{, Qi B)
hAQ1, Qi B)
A(AQ1Q1 B) — A(AQ1)Q1 B — AQ1A(Q1 B) — a(AQ1, Q1 B)
= - OC(AQl,Ql)QfB - AQlA(Qf) f—B
- AQ1a(Q7, Q1 B) — a(AQ1, Qi B).
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Since
AQ1a(Q1, Q1 B) + a(AQ1, Q1 B) — a(AQ1,Q1)Qi B =0,

we conclude

h(A,B) = — a(AQ1,1)Qi B — AQ1A(Q1)Qi B
= —AQ1a(1,)Q7 B — AQ1A(Q1)Q1 B
AQIA(NQT B — AQ1A(QT)QT B
= AQ1A(Q1)QT B
= AQ1(—Q1(Q1,Q1)Q1 + Q1 a(Q1,Q1)Q1)Q1 B = 0.

Thus A(AB) = A(A)B + AA(B) + a(A, B) for any A,B € Q(algL)Q. Hence
§(AB) = 6(A)B + Ad(B) + a(A, B) for any A, B € Q(alg £)Q.

Claim 2. (02, ) is a generalized derivation.

By Corollary 4.3, §(PB) = §(P)B + P§(B) + a(P,B) for any P = P? € algL
and B € alg £. In particular, §(PB) = §(P)B + P§(B) + o(P, B) for any P = P? €
Q' alg LQ' and B € Q+ alg LQ*. Since Q' alg LQ is a von Neumann algebra and
« is norm continuous in the first component, we have that (dz, @) is a generalized

derivation.
Thus for any A, B € alg £, Claims 1 and 2 yield

6(ABQ) = 0(QAQQBQ)

(QAQ)QBQ + QAQI(QBQ) + a(QAQ, QBQ)
(AQ)BQ + AQ4(BQ) + a(AQ, BQ),
(
(

S(ABQ"') = 5(QTAQ QT BQ™Y)

QTAQN)QTBQT + QT AQTI(QTBQT
+a(QTAQT, QT BQY)

= 6(AQM)BQ™ + AQ5(BQ™) + a(AQ ", BQ™M).

]
0
0
]

By the assumption,

= 0(QTAQT)QBQ + QT AQTI(QBQ) + a(QTAQ, QBQ)
= 0(AQ™)BQ + AQ3(BQ) + a(AQ™, BQ),
0=06(QAQ)QBQ" +QAQQ"BQ™) + a(QAQ,QBQ™)
= 0(AQ)BQ™" + AQ3(BQ™) + a(AQ, BQ™).
Hence 6(AB) = 6(A)B + Aé(B) + o(A, B). O
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