Article
Keywords:
periodic solution; critical point; non-autonomous second-order system; Sobolev inequality
Summary:
The purpose of this paper is to study the existence of periodic solutions for the non-autonomous second order Hamiltonian system \begin {equation*} \begin {cases} \ddot u(t)=\nabla F(t,u(t)),\enspace \text {a.e.} \ t\in [0,T],\\ u(0)-u(T)=\dot u(0)-\dot u(T)=0. \end {cases} \end {equation*} Some new existence theorems are obtained by the least action principle.
References:
[2] Fonda, A., Gossez, J.-P.:
Semicoercive variational problems at resonance: An abstract approach. Differ. Integral Equ. 3 (1990), 695-708.
MR 1044214 |
Zbl 0727.35056
[4] Mawhin, J., Willem, M.:
Critical Point Theory and Hamiltonian Systems. Springer Berlin (1989).
MR 0982267 |
Zbl 0676.58017
[6] Tang, C. L.:
Periodic solution of non-autonomous second order systems with $\gamma$-quasisub-additive potential. J. Math. Anal. Appl. 189 (1995), 671-675.
DOI 10.1006/jmaa.1995.1044 |
MR 1312546