Previous |  Up |  Next

Article

Keywords:
periodic solution; critical point; non-autonomous second-order system; Sobolev inequality
Summary:
The purpose of this paper is to study the existence of periodic solutions for the non-autonomous second order Hamiltonian system \begin {equation*} \begin {cases} \ddot u(t)=\nabla F(t,u(t)),\enspace \text {a.e.} \ t\in [0,T],\\ u(0)-u(T)=\dot u(0)-\dot u(T)=0. \end {cases} \end {equation*} Some new existence theorems are obtained by the least action principle.
References:
[1] Berger, M. S., Schechter, M.: On the solvability of semilinear gradient operator equations. Adv. Math. 25 (1977), 97-132. DOI 10.1016/0001-8708(77)90001-9 | MR 0500336 | Zbl 0354.47025
[2] Fonda, A., Gossez, J.-P.: Semicoercive variational problems at resonance: An abstract approach. Differ. Integral Equ. 3 (1990), 695-708. MR 1044214 | Zbl 0727.35056
[3] Ma, J., Tang, C. L.: Periodic solution for some nonautonomous second-order systems. J. Math. Anal. Appl. 275 (2002), 482-494. DOI 10.1016/S0022-247X(02)00636-4 | MR 1943760
[4] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer Berlin (1989). MR 0982267 | Zbl 0676.58017
[5] Rabinowitz, P. H.: On subharmonic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 33 (1980), 609-633. DOI 10.1002/cpa.3160330504 | MR 0586414 | Zbl 0425.34024
[6] Tang, C. L.: Periodic solution of non-autonomous second order systems with $\gamma$-quasisub-additive potential. J. Math. Anal. Appl. 189 (1995), 671-675. DOI 10.1006/jmaa.1995.1044 | MR 1312546
[7] Tang, C. L.: Periodic solution of non-autonomous second order system. J. Math. Anal. Appl. 202 (1996), 465-469. DOI 10.1006/jmaa.1996.0327 | MR 1406241
[8] Tang, C. L.: Existence and multiplicity of periodic solutions for nonautonomous second order systems. Nonlinear Anal., Theory Methods Appl. 32 (1998), 299-304. DOI 10.1016/S0362-546X(97)00493-8 | MR 1610641 | Zbl 0949.34032
[9] Wu, X. P., Tang, C. L.: Periodic solution of a class of non-autonomous second order systems. J. Math. Anal. Appl. 236 (1999), 227-235. DOI 10.1006/jmaa.1999.6408 | MR 1704579
[10] Zhao, F. K., Wu, X.: Periodic solution for class of non-autonomous second order systems. J. Math. Anal. Appl. 296 (2004), 422-434. DOI 10.1016/j.jmaa.2004.01.041 | MR 2075174
Partner of
EuDML logo