[3] Ciarlet, P. G.:
The Finite Elements Method for Elliptic Problems. North-Holland Amsterdam-New York-Oxford (1978).
MR 0520174
[4] Cockburn, B.:
Discontinuous Galerkin methods for convection-dominated problems. In: High-Order Methods for Computational Physics. Lect. Notes Comput. Sci. Eng., Vol. 9 T. J. Barth, H. Deconinck Springer Berlin (1999), 69-224.
DOI 10.1007/978-3-662-03882-6_2 |
MR 1712278 |
Zbl 0937.76049
[5] Cockburn, B., Karniadakis, G. E., Shu, C.-W., eds.:
Discontinuous Galerkin Methods. Springer Berlin (2000).
MR 1842160 |
Zbl 0989.76045
[7] Dolejší, V., Feistauer, M.:
Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems. Numer. Funct. Anal. Optimization 26 (2005), 349-383.
DOI 10.1081/NFA-200067298 |
MR 2153838
[8] Dolejší, V., Feistauer, M., Hozman, J.:
Analysis of semi-implicit {DGFEM} for nonlinear convection-diffusion problems on nonconforming meshes. Comput. Methods Appl. Mech. Eng. 196 (2007), 2813-2827.
DOI 10.1016/j.cma.2006.09.025 |
MR 2325393
[9] Dolejší, V., Feistauer, M., Kučera, V., Sobotíková, V.:
An optimal {$L^{\infty}(L^2)$}-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem. IMA J. Numer. Anal. 28 (2008), 496-521.
DOI 10.1093/imanum/drm023 |
MR 2433210
[10] Dolejší, V., Feistauer, M., Sobotíková, V.:
A discontinuous Galerkin method for nonlinear convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 194 (2005), 2709-2733.
DOI 10.1016/j.cma.2004.07.017 |
MR 2136396
[11] Feistauer, M.:
Optimal error estimates in the {DGFEM} for nonlinear convection-diffusion problems. In: Numerical Mathematics and Advanced Applications, ENUMATH 2007 K. Kunisch, G. Of, O. Steinbach Springer Heidelberg (2008), 323-330.
MR 2537215
[12] Feistauer, M., Kučera, V.:
Analysis of the DGFEM for nonlinear convection-diffusion problems. ETNA, Electron. Trans. Numer. Anal. 32 (2008), 33-48.
MR 2537215
[13] Feistauer, M., Dolejší, V., Kučera, V., Sobotíková, V.: An optimal $L^{\infty}(L^2)$ error estimates for the discontinuous Galerkin approximation of a nonlinear nonstationary convection-diffusion problem on nonconforming meshes. M2AN, Math. Model. Numer. Anal Submitted.
[14] Feistauer, M., Švadlenka, K.:
Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems. J. Numer. Math. 12 (2004), 97-117.
DOI 10.1515/156939504323074504 |
MR 2062581
[15] Houston, P., Robson, J., Süli, E.:
Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I: The scalar case. IMA J. Numer. Anal. 25 (2005), 726-749.
DOI 10.1093/imanum/dri014 |
MR 2170521
[16] Houston, P., Schwab, C., Süli, E.:
Discontinuous $hp$-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), 2133-2163.
DOI 10.1137/S0036142900374111 |
MR 1897953
[17] Kufner, A., John, O., Fučík, S.:
Function Spaces. Academia Prague (1977).
MR 0482102
[18] Nečas, J.:
Les Méthodes Directes en Thèorie des Equations Elliptiques. Academia Prague (1967).
MR 0227584
[19] Rivière, B., Wheeler, M. F.:
A discontinuous Galerkin method applied to nonlinear parabolic equations. In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes Comput. Sci. Eng., Vol. 11 B. Cockburn, G. E. Karniadakis, C.-W. Schu Springer Berlin (2000), 231-244.
DOI 10.1007/978-3-642-59721-3_17 |
MR 1842177
[20] Rivière, B., Wheeler, M. F., Girault, V.:
Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems I. Comput. Geosci. 3 (1999), 337-360.
DOI 10.1023/A:1011591328604 |
MR 1750076
[22] Roos, H.-G., Zarin, H.:
A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes. Numer. Methods Partial Differential Equations 23 (2007), 1560-1576.
DOI 10.1002/num.20241 |
MR 2355174 |
Zbl 1145.65100
[23] Roubíček, T.:
Nonlinear Partial Differential Equations with Applications. Birkhäuser Basel-Boston-Berlin (2005).
MR 2176645