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Abstract. The purpose of this paper is to study the existence of periodic solutions for
the non-autonomous second order Hamiltonian system

{

ü(t) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0.

Some new existence theorems are obtained by the least action principle.

Keywords: periodic solution, critical point, non-autonomous second-order system, Sobo-
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1. Introduction

Consider the non-autonomous second order Hamiltonian system

(1.1)

{

ü(t) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

where T > 0, F : [0, T ]× R
N → R satisfies the following assumption:

*This work was supported by the Graduate degree thesis Innovation Foundation of Central
South University (No. 3960-71131100014), the Outstanding Doctor degree thesis Implan-
tation Foundation of Central South University (No. 2008yb032), and by the Postdoctoral
Science Foundation of Central South University.
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(A) F (t, x) is measurable in t for every x ∈ R
N and continuously differentiable

in x for a.e. t ∈ [0, T ], and there exist a ∈ C(R+,R+), b ∈ L1([0, T ];R+) such that

|F (t, x)| 6 a(|x|)b(t), |∇F (t, x)| 6 a(|x|)b(t)

for all x ∈ R
N and a.e. t ∈ [0, T ].

The corresponding functional ϕ on H1
T given by

ϕ(u) =
1

2

∫ T

0

|u̇(t)|2 dt +

∫ T

0

F (t, u(t)) dt

is continuously differentiable and weakly lower semicontinuous on H1
T , where

H1
T = {u : [0, T ] → R

N | u is absolutely continuous,

u(0) = u(T ) and u̇ ∈ L2(0, T ;RN)}

is a Hilbert space with the usual scalar product and norm (see [4]). Moreover, one

has

(ϕ′(u), v) =

∫ T

0

[(u̇(t), v̇(t)) + (∇F (t, u(t)), v(t))] dt

for u, v ∈ H1
T . It is well known that the solutions of problem (1.1) correspond to the

critical points of ϕ (see [4]).

For u ∈ H1
T , let ū = T−1

∫ T

0
u(t) dt and ũ(t) = u(t) − ū. Then one has

‖ũ‖2
∞ 6

T

12

∫ T

0

|u̇(t)|2 dt (Sobolev’s inequality)

(see [4], Proposition 1.3).

In many papers (see [1], [3]–[10]) it has been shown by the least action principle

that problem (1.1) has at least one solution which minimizes ϕ on H1
T . When F (t, ·)

is convex for a.e. t ∈ [0, T ], Mawhin-Willem [4] studied the existence of a solution

which minimizes ϕ on H1
T for problem (1.1). For non-convex potential cases, using

the least action principle, the existence of a solution which minimizes ϕ on H1
T

has been investigated by many people (see [3], [6]–[10] and the references therein).

Inspired and motivated by the results in [3] and [8]–[10], we consider problem (1.1)

with the potential F (t, x) = F1(t, x) + F2(t, x). In our Theorem 2.1, it is assumed

that

(1.2) F1(t, x) > G(x)|f(t)|,
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where G(x) is subconvex and ∇F2(t, x) has sublinear growth. In Theorem 2.2, it

is assumed that F1(t, x) satisfies (1.2) and F2(t, x) has subquadratic growth. In

Theorem 2.3, it is assumed that F1(t, x) satisfies (1.2) and

(1.3) F2(t, x) > (h(t), x) + g(t),

where h(t) ∈ L1(0, T ;RN) and g(t) ∈ L1(0, T ;R). In Theorem 2.4, it is assumed

that F1(t, x) is subconvex with subquadratic growth and F2(t, x) satisfies (1.3). In

Theorem 2.5, it is assumed that F1(t, x) → +∞ uniformly for a.e. t ∈ [0, T ], as

|x| → ∞ and F2(t, x) satisfies (1.3). By using the least action principle, we obtain

that system (1.1) has at least one solution. Theorems 2.1–2.4 develop and generalize

the corresponding results in [8] and [10] and Theorem 2.5 is a new result.

2. Main results and proofs

We first recall a definition due to Wu-Tang [9].

A function G : R
N → R is called (λ, µ)-subconvex if

G(λ(x + y)) 6 µ(G(x) + G(y))

for some λ, µ > 0 and all x, y ∈ R
N . A function is called γ-subadditive if it is (1, γ)-

subconvex. A function is called subadditive if it is 1-subadditive. The convex and

subadditive functions are special cases of subconvex functions.

Theorem 2.1. Suppose that F (t, x) = F1(t, x)+F2(t, x), where F1 and F2 satisfy

assumption (A) and the following conditions:

(i) there exist M > 0, f ∈ L1(0, T ;R) and G : R
N → R which is continuous and

(λ, µ)-subconvex for some λ > 1
2 and 0 < µ < 2λ2, such that

F1(t, x) > G(x)|f(t)|

for all |x| > M and a.e. t ∈ [0, T ];

(ii) there exist p1, p2 ∈ L1(0, T ;R+) and α ∈ [0, 1) such that

|∇F2(t, x)| 6 p1(t)|x|
α + p2(t)

for all x ∈ R
N and a.e. t ∈ [0, T ];

(iii)

1

|x|2α

[

G(λx)

µ

∫ T

0

|f(t)| dt +

∫ T

0

F2(t, x) dt

]

→ +∞ as |x| → ∞.

Then problem (1.1) has at least one solution which minimizes ϕ on H1
T .
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P r o o f. Let β = log2λ 2µ. Then β < 2. In a way similar to Wu-Tang [9], by

the (λ, µ)-subconvexity and continuity of G(·), one can obtain that there exists a

constant a0 > 0 such that

|f(t)|G(x) 6 a0(2µ|x|β + 1)|f(t)|

for a.e. t ∈ [0, T ] and all x ∈ R
N . Thus by assumption (A) and condition (i), we

have

F1(t, x) > G(x)|f(t)| + p(t)

for all x ∈ R
N and a.e. t ∈ [0, T ] and for p ∈ L1(0, T ) given by

p(t) = − max
06|x|6M

a(|x|)b(t) − a0(2µMβ + 1)|f(t)|.

It follows from (i) and Sobolev’s inequality that

∫ T

0

F1(t, u(t)) dt(2.1)

>

∫ T

0

G(u(t))|f(t)| dt +

∫ T

0

p(t) dt

>
1

µ

∫ T

0

G(λū)|f(t)| dt −

∫ T

0

G(−ũ(t))|f(t)| dt +

∫ T

0

p(t) dt

>
1

µ

∫ T

0

G(λū)|f(t)| dt − a0(2µ‖ũ‖β
∞ + 1)

∫ T

0

|f(t)| dt +

∫ T

0

p(t) dt

>
1

µ

∫ T

0

G(λū)|f(t)| dt − C1

(
∫ T

0

|u̇(t)|2 dt

)β/2

− C2 + C3

for all u ∈ H1
T and some constants C1, C2, C3. It follows from assumption (ii) and

Sobolev’s inequality that

∣

∣

∣

∣

∫ T

0

[F2(t, u(t)) − F2(t, ū)] dt

∣

∣

∣

∣

(2.2)

=

∣

∣

∣

∣

∫ T

0

∫ 1

0

(∇F2(t, ū + sũ(t)), ũ(t)) ds dt

∣

∣

∣

∣

6

∫ T

0

∫ 1

0

p1(t)|ū + sũ(t)|α|ũ(t)| ds dt +

∫ T

0

p2(t)|ũ(t)| dt
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6 2(|ū|α + ‖ũ‖α
∞)‖ũ‖∞

∫ T

0

p1(t) dt + ‖ũ‖∞

∫ T

0

p2(t) dt

6
3

T
‖ũ‖2

∞ +
T

3
|ū|2α

(
∫ T

0

p1(t) dt

)2

+ 2‖ũ‖α+1
∞

∫ T

0

p1(t) dt

+ ‖ũ‖∞

∫ T

0

p2(t) dt

6
1

4

∫ T

0

|u̇(t)|2 dt + C4|ū|
2α + C5

(
∫ T

0

|u̇(t)|2 dt

)(α+1)/2

+ C6

(
∫ T

0

|u̇(t)|2 dt

)1/2

for all u ∈ H1
T and some positive constants C4, C5, C6. It follows from (2.1) and

(2.2) that

ϕ(u) =
1

2

∫ T

0

|u̇(t)|2 dt +

∫ T

0

F1(t, u(t)) dt +

∫ T

0

[F2(t, u(t)) − F2(t, ū)] dt

+

∫ T

0

F2(t, ū) dt

>
1

2

∫ T

0

|u̇(t)|2 dt +
1

µ

∫ T

0

G(λū)|f(t)| dt − C1

(
∫ T

0

|u̇(t)|2 dt

)β/2

− C2 + C3

−
1

4

∫ T

0

|u̇(t)|2 dt − C4|ū|
2α − C5

(
∫ T

0

|u̇(t)|2 dt

)(α+1)/2

− C6

(
∫ T

0

|u̇(t)|2 dt

)1/2

+

∫ T

0

F2(t, ū) dt

=
1

4

∫ T

0

|u̇(t)|2 dt − C1

(
∫ T

0

|u̇(t)|2 dt

)β/2

− C2 + C3

− C5

(
∫ T

0

|u̇(t)|2 dt

)(α+1)/2

− C6

(
∫ T

0

|u̇(t)|2 dt

)1/2

+ |ū|2α

(

∫ T

0 G(λū)|f(t)| dt

µ|ū|2α
+

∫ T

0 F2(t, ū) dt

|ū|2α
− C4

)

for all u ∈ H1
T , which implies that

ϕ(u) → +∞

as ‖u‖ → ∞ by (iii), because α < 1, β < 2, and

‖u‖ → ∞ ⇐⇒

(

|ū|2 +

∫ T

0

|u̇(t)|2 dt

)1/2

→ ∞.

By Theorem 1.1 and Corollary 1.1 in Mawhin-Willem [4], the proof is completed. �
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Theorem 2.2. Suppose that F (t, x) = F1(t, x)+F2(t, x), where F1 and F2 satisfy

assumption (A) and the following conditions:

(i) there exist M > 0, f ∈ L1(0, T ;R) satisfying
∫ T

0
|f(t)| dt 6= 0 and G : R

N → R

which is continuous and (λ, µ)-subconvex for some λ > 1
2 and 0 < µ < 2λ2 such

that

F1(t, x) > G(x)|f(t)|

for all |x| > M and a.e. t ∈ [0, T ];

(ii) there exist δ ∈ [0, 2), k1 ∈ L1(0, T ;R+), and k2 ∈ L1(0, T ;R) such that

|F2(t, x)| 6 k1(t)|x|
δ + k2(t)

for all x ∈ R
N and a.e. t ∈ [0, T ];

(iii)
G(x)

|x|δ
→ +∞ as |x| → ∞.

Then problem (1.1) has at least one solution which minimizes ϕ on H1
T .

P r o o f. By condition (ii) and Sobolev’s inequality, one has

∣

∣

∣

∣

∫ T

0

F2(t, u(t)) dt

∣

∣

∣

∣

6

∫ T

0

[k1(t)|u(t)|δ + k2(t)] dt(2.3)

6 2δ(|ū|δ + ‖ũ‖δ
∞)

∫ T

0

k1(t) dt +

∫ T

0

k2(t) dt

6 D1

(
∫ T

0

|u̇(t)|2 dt

)δ/2

+ D2|ū|
δ + D3

for all u ∈ H1
T and some constants D1, D2, and D3. It follows from (2.1) and (2.3)

that

ϕ(u) =
1

2

∫ T

0

|u̇(t)|2 dt +

∫ T

0

F (t, u(t)) dt

>
1

2

∫ T

0

|u̇(t)|2 dt − C1

(
∫ T

0

|u̇(t)|2 dt

)β/2

− C2 + C3

− D1

(
∫ T

0

|u̇(t)|2 dt

)δ/2

− D3 + |ū|δ
(

G(λū)

µ|ū|δ

∫ T

0

|f(t)| dt − D2

)

for all u ∈ H1
T , which implies that

ϕ(u) → +∞
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as ‖u‖ → ∞ by (iii), because δ < 2, β < 2, and

‖u‖ → ∞ ⇐⇒

(

|ū|2 +

∫ T

0

|u̇(t)|2 dt

)1/2

→ ∞.

By Theorem 1.1 and Corollary 1.1 in Mawhin-Willem [4], the proof is completed. �

Theorem 2.3. Suppose that F (t, x) = F1(t, x)+F2(t, x), where F1 and F2 satisfy

assumption (A) and the following conditions:

(i) there exist M > 0, f ∈ L1(0, T ;R) satisfying
∫ T

0 |f(t)| dt 6= 0, and G : R
N → R

which is continuous and (λ, µ)-subconvex for some λ > 1
2 and 0 < µ < 2λ2 such

that

F1(t, x) > G(x)|f(t)|

for all |x| > M and a.e. t ∈ [0, T ];

(ii) there exist g(t) ∈ L1(0, T ;R) and h(t) ∈ L1(0, T ;RN) such that

F2(t, x) > (h(t), x) + g(t)

for all x ∈ R
N and a.e. t ∈ [0, T ];

(iii)

G(x)

|x|
→ +∞ as |x| → ∞.

Then problem (1.1) has at least one solution which minimizes ϕ on H1
T .

P r o o f. By condition (ii) and Sobolev’s inequality, one has

∫ T

0

F2(t, u(t)) dt >

∫ T

0

[(h(t), ū + ũ(t)) + g(t)] dt(2.4)

> − ‖ũ‖∞

∫ T

0

|h(t)| dt − |ū|

∫ T

0

|h(t)| dt +

∫ T

0

g(t) dt

> − D4

(
∫ T

0

|u̇(t)|2 dt

)1/2

− D5|ū| + D6
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for all u ∈ H1
T and some constants D4, D5, and D6. It follows from (2.1) and (2.4)

that

ϕ(u) =
1

2

∫ T

0

|u̇(t)|2 dt +

∫ T

0

F (t, u(t)) dt

>
1

2

∫ T

0

|u̇(t)|2 dt +
1

µ

∫ T

0

G(λū)|f(t)| dt − C1

(
∫ T

0

|u̇(t)|2 dt

)β/2

− C2 + C3 − D4

(
∫ T

0

|u̇(t)|2 dt

)1/2

− D5|ū| + D6

=
1

2

∫ T

0

|u̇(t)|2 dt − C1

(
∫ T

0

|u̇(t)|2 dt

)β/2

− C2 + C3

− D4

(
∫ T

0

|u̇(t)|2 dt

)1/2

+ D6 + |ū|

(

1

µ|ū|

∫ T

0

G(λū)|f(t)| dt − D5

)

for all u ∈ H1
T , which implies that

ϕ(u) → +∞

as ‖u‖ → ∞ by (iii), because β < 2 and

‖u‖ → ∞ ⇐⇒

(

|ū|2 +

∫ T

0

|u̇(t)|2 dt

)1/2

→ ∞.

By Theorem 1.1 and Corollary 1.1 in Mawhin-Willem [4], the proof is completed. �

R em a r k 2.1. In [8], the case that G is subadditive is considered. Our theorems

generalize that result to the case that G is (λ, µ)-subconvex by modifying some

conditions. Moreover, the restriction about F2(t, x) is also modified. Especially, our

Theorem 2.1 generalizes the restriction about |∇F2(t, x)| in [8].

Theorem 2.4. Suppose that F (t, x) = F1(t, x)+F2(t, x), where F1 and F2 satisfy

assumption (A) and the following conditions:

(i) F1(t, x) is (λ, µ)-subconvex for a.e. t ∈ [0, T ] and there exist δ ∈ [0, 2), θ ∈

L1(0, T ;R+) and ω ∈ L1(0, T ;R) such that

F1(t, x) 6 θ(t)|x|δ + ω(t)

for all x ∈ R
N and a.e. t ∈ [0, T ];

(ii) there exist q(t) ∈ L1(0, T ;R) and h(t) ∈ L1(0, T ;RN) such that

F2(t, x) > (h(t), x) + q(t)

for all x ∈ R
N and a.e. t ∈ [0, T ];
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(iii)

1

|x|

∫ T

0

F1(t, x) dt → +∞ as |x| → ∞.

Then problem (1.1) has at least one solution which minimizes ϕ on H1
T .

P r o o f. By the (λ, µ)-subconvexity of F1(t, ·), one has

∫ T

0

F1(t, u(t)) dt >
1

µ

∫ T

0

F1(t, λū) dt −

∫ T

0

F1(t,−ũ(t)) dt(2.5)

>
1

µ

∫ T

0

F1(t, λū) dt −

∫ T

0

[θ(t)|ũ(t)|δ + ω(t)] dt

>
1

µ

∫ T

0

F1(t, λū) dt − ‖ũ‖δ
∞

∫ T

0

θ(t) dt −

∫ T

0

ω(t) dt

>
1

µ

∫ T

0

F1(t, λū) dt − E1

(
∫ T

0

|u̇(t)|2 dt

)δ/2

− E2

for all u ∈ H1
T and some constants E1, E2. By condition (ii), one has

∫ T

0

F2(t, u(t)) dt >

∫ T

0

[(h(t), ū + ũ(t)) + q(t)] dt(2.6)

=

∫ T

0

(h(t), ū) dt +

∫ T

0

(h(t), ũ(t)) dt +

∫ T

0

q(t) dt

> − |ū|

∫ T

0

|h(t)| dt − ‖ũ‖∞

∫ T

0

|h(t)| dt +

∫ T

0

q(t) dt

> − E3

(
∫ T

0

|u̇(t)|2 dt

)1/2

− E4|ū| + E5

for all u ∈ H1
T and some constants E3, E4, E5. It follows from (2.5) and (2.6) that

ϕ(u) =
1

2

∫ T

0

|u̇(t)|2 dt +

∫ T

0

F (t, u(t)) dt

>
1

2

∫ T

0

|u̇(t)|2 dt − E1

(
∫ T

0

|u̇(t)|2 dt

)δ/2

− E2 − E3

(
∫ T

0

|u̇(t)|2 dt

)1/2

+ E5 + |ū|

(

∫ T

0 F1(t, λū) dt

µ|ū|
− E4

)

for all u ∈ H1
T , which implies that

ϕ(u) → +∞
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as ‖u‖ → ∞ by (iii), because δ < 2 and

‖u‖ → ∞ ⇐⇒

(

|ū|2 +

∫ T

0

|u̇(t)|2 dt

)1/2

→ ∞.

By Theorem 1.1 and Corollary 1.1 in Mawhin-Willem [4], the proof is completed. �

Corollary 2.1. Suppose that F (t, x) = F1(t, x)+F2(t, x), where F1 and F2 satisfy

assumption (A) and the following conditions:

(i) F1(t, x) is (λ, µ)-subconvex for a.e. t ∈ [0, T ], where λ > 1
2 and µ < 2λ2;

(ii) there exist q(t) ∈ L1(0, T ;R) and h(t) ∈ L1(0, T ;RN) such that

F2(t, x) > (h(t), x) + q(t)

for all x ∈ R
N and a.e. t ∈ [0, T ];

(iii)

1

|x|

∫ T

0

F1(t, x) dt → +∞ as |x| → ∞.

Then problem (1.1) has at least one solution which minimizes ϕ on H1
T .

P r o o f. Let β = log2λ 2µ. Then β < 2. In a way similar to Wu-Tang [9], by the

(λ, µ)-subconvexity of F1(t, ·) and assumption (A) one can prove that

F1(t, x) 6 c0(2µ|x|β + 1)b(t)

for a.e. t ∈ [0, T ] and all x ∈ R
N , where β < 2, c0 = max

06s61
a(s). Thus by Theorem 2.4,

the proof is completed. �

R em a r k 2.2. In [10], the case with
∫ T

0 h(t) dt = 0 is considered. Our Theo-

rem 2.4 and Corollary 2.1 prove the conclusion holds as
∫ T

0
h(t) dt = 0 is omitted by

modifying some conditions.

Lemma A (see [7]). Assume that F satisfies assumption (A) and

F (t, x) → +∞ as |x| → ∞

uniformly for a.e. t ∈ [0, T ]. Then there exist η(t) ∈ L1(0, T ;R) and a subadditive

function G : R
N → R such that

G(x) + η(t) 6 F (t, x)
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for all x ∈ R
N and a.e. t ∈ [0, T ] and

G(x) → +∞ as |x| → ∞

and

0 6 G(x) 6 |x| + 1

for all x ∈ R
N .

Theorem 2.5. Suppose that F (t, x) = F1(t, x)+F2(t, x), where F1 and F2 satisfy

assumption (A) and the following conditions:

(i)

F1(t, x) → +∞ as |x| → ∞

uniformly for a.e. t ∈ [0, T ];

(ii) there exist v(t) ∈ L1(0, T ;R) and h(t) ∈ L1(0, T ;RN) with
∫ T

0 h(t) dt = 0 such

that

F2(t, x) > (h(t), x) + v(t)

for all x ∈ R
N and a.e. t ∈ [0, T ].

Then problem (1.1) has at least one solution which minimizes ϕ on H1
T .

P r o o f. By condition (ii) and Sobolev’s inequality one has

∫ T

0

F2(t, u(t)) dt >

∫ T

0

[(h(t), ū + ũ(t)) + v(t)] dt(2.7)

> − ‖ũ‖∞

∫ T

0

|h(t)| dt +

∫ T

0

v(t) dt

> − H1

(
∫ T

0

|u̇(t)|2 dt

)1/2

+ H2

for all u ∈ H1
T and some constants H1 and H2. By Lemma A, (2.7), and Sobolev’s

inequality one has

ϕ(u) =
1

2

∫ T

0

|u̇(t)|2 dt +

∫ T

0

F1(t, u(t)) dt +

∫ T

0

F2(t, u(t)) dt

>
1

2

∫ T

0

|u̇(t)|2 dt +

∫ T

0

G(u(t)) dt +

∫ T

0

η(t) dt − H1

(
∫ T

0

|u̇(t)|2 dt

)1/2

+ H2

>
1

2

∫ T

0

|u̇(t)|2 dt +

∫ T

0

G(ū) dt −

∫ T

0

G(−ũ(t)) dt

+

∫ T

0

η(t) dt − H1

(
∫ T

0

|u̇(t)|2 dt

)1/2

+ H2

>
1

2

∫ T

0

|u̇(t)|2 dt + TG(ū) − T (‖ũ‖∞ + 1) + H3 − H1

(
∫ T

0

|u̇(t)|2 dt

)1/2

+ H2
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for all u ∈ H1
T and some constant H3. From the coercivity of G we obtain

ϕ(u) → +∞ as ‖u‖ → ∞,

because

‖u‖ → ∞ ⇐⇒

(

|ū|2 +

∫ T

0

|u̇(t)|2 dt

)1/2

→ ∞.

By Theorem 1.1 and Corollary 1.1 in Mawhin-Willem [4], the proof is completed. �

R em a r k 2.3. In [2], A. Fonda and J.-P. Gossez obtained an abstract theorem

in which it is necessary to seek a functional b̂. However, we find that in general

it is difficult to find the functional b̂ satisfying the conditions of the theorem. It

is therefore not very suitable for practical use. In our conclusions, for the second

order Hamiltonian systems, we start from the property of F itself to seek suitable

restrictive conditions so that the necessity of finding b̂ is avoided. This is easier.
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