[3] Brezis, H., Nirenberg, L.:
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Comm. Pure Appl. Math. 36 (1983), 437-477.
DOI 10.1002/cpa.3160360405 |
MR 0709644
[4] Brezis, H., Peletier, L. A.:
Elliptic equations with critical exponent on $S\sp 3$: new non-minimising solutions. C. R. Math. Acad. Sci. Paris 339 (2004), 391-394.
DOI 10.1016/j.crma.2004.07.010 |
MR 2092750
[6] Budd, C. J., Humphries, A. R.:
Numerical and analytical estimates of existence regions for semi-linear elliptic equations with critical Sobolev exponents in cuboid and cylindrical domains. J. Comput. Appl. Math. 151 (2003), 59-84.
DOI 10.1016/S0377-0427(02)00737-9 |
MR 1950229 |
Zbl 1016.65082
[11] Dávila, J., Pino, M. del, Musso, M., Wei, J.:
Fast and slow decay solutions for supercritical elliptic problems in exterior domains. Calc. Var. Partial Differential Equations 32 (2008), 453-480.
DOI 10.1007/s00526-007-0154-1 |
MR 2402919
[15] Felmer, P. L., Quaas, A.:
Positive radial solutions to a `semilinear' equation involving the Pucci's operator. J. Differ. Equations 199 (2004), 376-393.
DOI 10.1016/j.jde.2004.01.001 |
MR 2047915
[16] Ghoussoub, N., Yuan, C.:
Multiple solutions for quasi-linear PDE's involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc. 352 (2000), 5703-5743.
DOI 10.1090/S0002-9947-00-02560-5 |
MR 1695021
[19] Grossi, M.:
Existence of radial solutions for an elliptic problem involving exponential nonlinearities. Discrete Contin. Dyn. Syst. 21 (2008), 221-232.
MR 2379462 |
Zbl 1155.35042
[21] Passaseo, D.:
Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u+a(x)u=u\sp {2\sp *-1}$ in bounded domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 185-227.
DOI 10.1016/S0294-1449(16)30102-0 |
MR 1378466
[22] Pohozaev, S. I.:
On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$. Russian Dokl. Akad. Nauk SSSR 165 (1965), 36-39.
MR 0192184
[23] Pucci, P., Serrin, J.:
Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures Appl. 69 (1990), 55-83.
MR 1054124