[2] Amann, H.:
Highly degenerate quasilinear parabolic systems. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 136-166.
MR 1118224 |
Zbl 0738.35029
[3] Hu, B., Zhang, J.:
Global existence for a class of non-Fickian polymer-penetrant systems. J. Partial Differ. Equations 9 (1996), 193-208.
MR 1413446
[4] Besenyei, Á.:
On a nonlinear system consisting of three different types of differential equations. Acta Math. Hungar. (2009).
MR 2629675
[5] Chipot, M., Lovat, B.:
Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems, advances in quenching. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8 (2001), 35-51.
MR 1820664
[7] Cinca, S.: Diffusion und Transport in porösen Medien bei veränderlichen Porosität. Diplomawork, University of Heidelberg (2000).
[8] Cohen, D. S., Jr., A. B. White, Whitelski, T. P.:
Shock formation on a multidimensional viscoelastic diffusive systems. SIAM J. Appl. Math. 55 (1995), 348-368.
DOI 10.1137/S0036139993269333 |
MR 1322764
[10] Lions, J. L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969).
MR 0259693 |
Zbl 0189.40603
[12] Rivière, B., Shaw, S.:
Discontinuous Galerkin finite element approximation of nonlinear non-Fickian diffusion in viscoelastic polymers. SIAM J. Numer. Anal. 44 (2006), 2650-2670.
DOI 10.1137/05064480X |
MR 2272610 |
Zbl 1135.65036
[13] Simon, L.:
Application of monotone type operators to parabolic and functional parabolic PDE's. C. M. Dafermos, M. Pokorný Handbook of Differential Equations: Evolutionary Equations, vol 4., North-Holland, Amsterdam (2008), 267-321.
MR 2508168
[14] Simon, L.: On some singular systems of parabolic functional differential equations. Submitted.