[1] Agarwal, R. P., Bohner, M.:
Quadratic functionals for second order matrix equations on time scales. Nonlinear Anal. 33 (1998), 675-692.
MR 1634922 |
Zbl 0938.49001
[2] Agarwal, R. P., Bohner, M., Řehák, P.:
Half-linear dynamic equations on time scales: IVP and oscillatory properties. V. Lakshmikantham on his 80th Birthday, R. P. Agarwal, D. O'Regan Nonlinear Analysis and Applications. Vol. I. Kluwer Academic Publishers, Dordrecht (2003), 1-56.
MR 2060210
[3] Bohner, M., Peterson, A. C.:
Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001).
MR 1843232 |
Zbl 0978.39001
[6] Došlý, O., Řehák, P.:
Half-Linear Differential Equations. Elsevier, North Holland (2005).
MR 2158903 |
Zbl 1090.34001
[8] Hilscher, R., Tisdell, C. C.:
Terminal value problems for first and second order nonlinear equations on time scales. Electron. J. Differential Equations 68 (2008), 21 pp.
MR 2411064 |
Zbl 1176.34059
[9] Matucci, S., Řehák, P.:
Nonoscillation of half-linear dynamic equations. (to appear) in Rocky Moutain J. Math.
MR 2672942
[10] Řehák, P.:
Half-linear dynamic equations on time scales: IVP and oscillatory properties. Nonl. Funct. Anal. Appl. 7 (2002), 361-404.
MR 1946469 |
Zbl 1037.34002
[11] Řehák, P.:
Function sequence technique for half-linear dynamic equations on time scales. Panam. Math. J. 16 (2006), 31-56.
MR 2186537 |
Zbl 1102.34020
[12] Řehák, P.:
How the constants in Hille-Nehari theorems depend on time scales. Adv. Difference Equ. 2006 (2006), 1-15.
MR 2255171 |
Zbl 1139.39301
[14] Řehák, P.: Peculiarities in power type comparison results for half-linear dynamic equations. Submitted.
[15] Řehák, P.:
New results on critical oscillation constants depending on a graininess. (to appear) in Dynam. Systems Appl.
MR 2741922 |
Zbl 1215.34115
[16]
C. A. Swanson.
Comparison and Oscillation Theory of Linear Differential EquationsAcademic Press, New York (1968).
MR 0463570