[1] Baym, G., Pethick, C. J.:
Ground state properties of magnetically trapped Bose-condensed rubidium gas. Phys. Rev. Lett. 76 (1996), 6-9.
DOI 10.1103/PhysRevLett.76.6
[2] Benjamin, T. B.:
The stability of solitary waves. Proc. Royal Soc. London, Ser. A. 328 (1972), 153-183.
MR 0338584
[3] Berestycki, H., Cazenave, T.:
Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéarires. C. R. Acad. Sci. Paris I 293 (1981), 489-492.
MR 0646873
[4] Bona, J. L.:
On the stability theory of solitary waves. Proc. Royal Soc. London, Ser. A. 344 (1975), 363-374.
MR 0386438 |
Zbl 0328.76016
[5] Caffarelli, L., Kohn, R., Nirenberg, L.:
First order interpolation inequalities with weights. Compositio Math. 53 (1984), 259-275.
MR 0768824 |
Zbl 0563.46024
[6] Cazenave, T.: An Introduction to Nonlinear Schrödinger Equations. Textos de Metodos Matematicos, 22, Rio de Janeiro (1989).
[7] Cazenave, T., Lions, P. L.:
Orbital satbility of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85 (1982), 549-561.
DOI 10.1007/BF01403504 |
MR 0677997
[12] Fukuizumi, R., Ohta, M.:
Stability of standing waves for nonlinear Schrödinger equations with potentials. Differential Integral Equations 16 (2003), 111-128.
MR 1948875 |
Zbl 1031.35132
[13] Fukuizumi, R., Ohta, M.:
Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. J. Math. Kyoto Univ. 45 (2005), 145-158.
DOI 10.1215/kjm/1250282971 |
MR 2138804
[14] Gill, T. S.: Optical guiding of laser beam in nonuniform plasma. Pramana Journal of Physics 55 (2000), 845-852.
[16] Glassey, R. T.:
On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation. J. Math. Phys. 18 (1977), 1794-1797.
DOI 10.1063/1.523491 |
MR 0460850
[18] Liu, C. S., Tripathi, V. K.:
Laser guiding in an axially nonuniform plasma channel. Phys. Plasmas 1 (1994), 3100-3103.
DOI 10.1063/1.870501
[19] Liu, Y., Wang, X. P., Wang, K.:
Instability of standing waves of the Schrödinger equations with inhomogeneous nonlinearity. Trans. Amer. Math. Soc. 358 (2006), 2105-2122.
DOI 10.1090/S0002-9947-05-03763-3 |
MR 2197450
[20] Merle, F.:
Nonexistence of minimal blow up solutions of equations $iu_t=-\triangle u-K(x) |u|^{4/N}u$ in $\Bbb R^N$. Ann. Inst. H. Poincaré, Phys. Théor. 64 (1996), 33-85.
MR 1378233 |
Zbl 0846.35060
[25] Sintzoff, P., Willem, M.:
A semilinear elliptic equation on $\Bbb R^N$ with unbounded coefficients. Variational and topological methods in the study of nonlinear phenomena 49 (Pisa 2000) 105-113 Birkhauser, Boston, 2002.
MR 1879738
[27] Tsurumi, T., Waditi, M.:
Collapses of wave functions in multidimensional nonlinear Schrödinger equations under harmonic potential. J. Phys. Soc. Japan 66 (1997), 3031-3034.
DOI 10.1143/JPSJ.66.3031
[28] Tsurumi, T., Waditi, M.: Instability of the Bose-Einstein condensate under magnetic trap. J. Phys. Soc. Japan 66 (1997), 3035-3039.
[31] Willem, M.:
Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, 24, Birkhäuser, Boston (1996).
MR 1400007 |
Zbl 0856.49001
[32] Zhang, J.:
Sharp threshold for global existence and blowup in nonlinear Schrödinger equation with harmonic potential. Comm. Partial Differential Equations 30 (2005), 1429-1443.
DOI 10.1080/03605300500299539 |
MR 2182299