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Abstract. By deriving a variant of interpolation inequality, we obtain a sharp criterion
for global existence and blow-up of solutions to the inhomogeneous nonlinear Schrödinger
equation with harmonic potential

iϕt = −∆ϕ+ |x|2ϕ − |x|b|ϕ|p−2ϕ.

We also prove the existence of unstable standing-wave solutions via blow-up under certain
conditions on the unbounded inhomogeneity and the power of nonlinearity, as well as the
frequency of the wave.
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1. Introduction

Let ϕ = ϕ(x, t) : R
N × R+ → C be a complex-valued function. The nonlinear

Schrödinger equation with the harmonic potential and inhomogeneous nonlinearity

(INLS-equation henceforth)

(1.1) iϕt = −∆ϕ+ |x|2ϕ−K(x)|ϕ|p−2ϕ, x ∈ R
N , t > 0,

arises in various physical contexts from the description of nonlinear waves such as

propagation of a laser beam and plasma waves. For example, when K(x) = 1, the

The research is supported by Youth Foundation of NSFC (No. 10501006) and distin-
guished Young Scholar Foundation of Fujian (2009J06001).
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INLS-equation (1.1) is a model describing the Bose-Einstein condensate with at-

tractive inter-particle interactions under magnetic trap [1], [27], [28]. Without the

harmonic potential, the INLS-equation describes the beam propagation in an inho-

mogeneous medium, where ϕ is the electric field in laser optics and K is proportional

to the electric density [14], [18].

From physical point of view, a basic question to the INLS-equation (1.1) is: when

can the condensate be unstable to collapse (blow-up) or exist for all time (global

existence)?

Another important issue that is often considered is whether or not global existence

obtained for arbitrary classes of initial data is the stability of the standing-wave

solutions eiωtϕ(x) of (1.1). The localized solutions ϕ (ground-state solutions) are

known in many circumstances to play a distinguished role in the long-time evolution

of the initial disturbance. Therefore, the orbital and asymptotic stability of these

special solutions has been a central theme of development for more than three decades

(cf. [2], [4], [7], [8], [17], [24], [30], etc). Often, when nonlinear wave equations have

solutions that lose regularity in finite time, the translation to singularity formation

is associated with a standing wave going unstable.

The Cauchy problem and the issue of stability of standing waves of the INLS-

equation have been studied extensively. For example, when K(x) = 1, Fukuizumi

[11], Rose and Weinstein [22] and Zhang [32] obtained some results on the stability

and instability of standing waves as well as global existence of (1.1) for various initial

profiles. It is observed that there is a basic estimate used in their papers, i.e. the

Gagliardo-Nirenberg inequality (i.e. Lemma 2.1 in the case of γ = 0 and β = 0).

On the other hand, for the INLS-equation (K is not a constant) without harmonic

potential,

(1.2) iϕt + ∆ϕ+K(x)|ϕ|p−2ϕ = 0, x ∈ R
N ,

Merle [20] proved the existence and nonexistence of blow-up solutions of Eq. (1.2)

in the case of critical power p = 2 + 4/N and k1 6 K(x) 6 k2 with k1 and k2

being positive constants. Recently, Fibich, Liu, and Wang [10], [19] proved the

stability and instability of standing waves of Eq. (1.2) under the assumptions on

p > 2 + 4/N, K(ε|x|) with ε small, and K ∈ C4(RN ) ∩ L∞(RN ). Since K(x) is

bounded on RN in their papers, the Gagliardo-Nirenberg inequality still plays a key

role. However, when K(x) is unbounded on R
N , for example, K(x) = |x|b, it seems

that the standard Gagliardo-Nirenberg inequality can not be used any more. Let

us note that Fukuizumi and Ohta [13] obtained the instability of standing waves for

Eq. (1.2) when the inhomogeneity K of nonlinearity behaves like |x|−b at infinity

with 0 < b < 2. In [13], Hardy-Sobolev inequality plays an important role. For
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b > 0, neither the standard Gagliardo-Nirenberg inequality nor the Hardy-Sobolev

inequality can be used and the issue of whether or not particular initial data generate

a blow-up solution of Eq. (1.1) is more subtle. In [8], Chen and Guo established a

variant of interpolation inequality for N > 2, b > 0 and 2 + 2b/(N − 1) < p <

2(N + b)/(N − 1) and used it to study Eq. (1.2). Obviously, the nonlinear growth of

p in [8] is not optimal and the results in [8] do not cover a large class of nonlinear

Schrödinger equation.

In the present paper, we will derive an optimal version of Gagliardo-Nirenberg-

type inequality (see Theorem 2.3) and use it to study the INLS-equation (1.1) with

K(x) = |x|b, b > 0. More precisely, we propose and analyze here an inhomogeneous

nonlinear Schrödinger equation with harmonic potential of the form

(1.3) iϕt = −∆ϕ+ |x|2ϕ− |x|b|ϕ|p−2ϕ,

where b > 0 (since the case of b = 0 has been studied extensively), x ∈ R
N , N > 2. It

is our purpose here to find the conditions on the initial data for global existence and

blow-up of solutions to Eq. (1.3). Another goal of the paper is to show that those

standing-wave solutions eiωtϕ(x) are indeed unstable via blow-up when considered

as solutions of the INLS-equation (1.3). In other words, there are perturbations

arbitrary close to ϕ which, when posed as initial data for (1.3), lead to solutions

blow-up in finite time.

To establish the results in view, we use the method of cross-invariant sets by

Berestycki-Cazenave [3] and Shatah-Strauss [24], which was developed by many au-

thors (see, e.g. [19, 32]). A crucial ingredient in the proof of blow-up of solutions

and instability of standing waves by blow-up is a variant of the inequality of the

Gagliardo-Nirenberg-type interpolation (Theorem 2.3).

The plan of the paper is as follows. In Section 2, we derive a variant interpolation

inequality, which is found to play an essential role in the whole paper. In Section 3,

the Cauchy problem for Eq. (1.3) is studied. In Section 4, the result on existence of

the standing-wave solutions eiωtϕ(x) of Eq. (1.3) is presented, where ϕ is the ground

state solution of the related elliptic problem. Section 5 is devoted to proving blow-

up of solutions in finite time and global existence of solutions to the initial-value

problem for (1.3). Finally, in Section 6, the instability of the standing wave eiωtϕ(x)

for (1.3) by blow-up is obtained for some suitable frequency ω > 0, the inhomogeneity

associated with b and the power of nonlinearity p.

Notation. As above and henceforth, we denote the norm of the space Ls(Rn) by

|·|Ls , 1 6 s 6 ∞ and denote the integral
∫

RN dx simply by
∫

unless stated otherwise.

We also denote various positive constants by C or Cj and pc = 2(N +2+ b)/N . The
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function space in which we work is the Sobolev space

H1
r (RN ) = {u ∈ H1(RN ), u(x) = u(|x|)}

with the standard norm ‖u‖1 in H1(RN ).We regard H1
r (RN ) as a real Hilbert space

with the inner product (u, v)H1
r

= ℜ
∫

(∇u∇v + uv) .

2. An interpolation inequality

In this section, we will derive a variant of the well known Gagliardo- Nirenberg in-

equality. This inequality will play an essential role in the study of the inhomogeneous

nonlinear Schrödinger equation (1.3). First, we need the following two lemmas.

Lemma 2.1 ([5]) [Gagliardo-Nirenberg inequality]. Let 2 < q < q∗, where q∗ =

2N/(N − 2) when N > 3 and q∗ = +∞ when N = 2. Then there is a positive

constant C such that for any u ∈ H1(RN ),

(2.1)
∫

|u|q 6 C

(
∫

|∇u|2
)N(q−2)/4( ∫

|u|2
)(2q−N(q−2))/4

.

Lemma 2.2 [Strauss’ inequality]. Let N > 2. For any u ∈ H1
r , there is a constant

CN > 0 such that

(2.2) |x|
N−1

2 |u(x)| 6 CN

(
∫

|u|2
)

1
4
(

∫

|∇u|2
)

1
4

for a.e. x ∈ R
N .

P r o o f. See [26] or [31, Page 76, Lemma 4.5]. �

Theorem 2.3. Assume N > 2, b > 0 and 2 + 2b/(N − 1) < p < p̃, where

p̃ =

{ 2N

N − 2
+

2b

N − 1
, if N > 3,

+∞, if N = 2.

Then there is a constant C > 0 depending only on N , p and b such that for any

u ∈ H1
r ,

(2.3)
∫

|x|b|u|p 6 C

(
∫

|∇u|2
)

Np−2N−2b

4
(

∫

|u|2
)

2N+2b+2p−Np

4

.

718



P r o o f. First, we use Lemma 2.2 to get

(2.4)
∫

|x|b|u|p =

∫

(|x|
N−1

2 |u(x)|)
2b

N−1 |u|p−
2b

N−1

6 CN

(
∫

|u|2
)

b
2(N−1)

(
∫

|∇u|2
)

b
2(N−1)

∫

|u|p−
2b

N−1 .

Next, since 2 + 2b/(N − 1) < p < p̃, we have that 2 < p− 2b/(N − 1) < q∗. It is

deduced from Lemma 2.1 that

(2.5)
∫

|u|p−
2b

N−1 6 C

(
∫

|∇u|2
)

N(p−
2b

N−1
−2)

4
(

∫

|u|2
)

2(p−
2b

N−1
)−N(p−

2b
N−1

−2)

4

.

Since
b

2(N − 1)
+
N(p− 2b/(N − 1) − 2)

4
=
N(p− 2) − 2b

4

and

b

2(N − 1)
+

2(p− 2b/(N − 1)) −N(p− 2b/(N − 1) − 2)

4
=

2p− (N(p− 2) − 2b)

4
,

we obtain from (2.4) and (2.5) that

∫

|x|b|u|p 6 C

(
∫

|∇u|2
)

N(p−2)−2b

4
(

∫

|u|2
)

2p−(N(p−2)−2b)
4

.

The proof is complete. �

Remark. From the proof of Theorem 2.3 one can see that we require u ∈ H1
r . It

is still a question whether or not Theorem 2.3 holds for u ∈ H1(RN ) in the case of

b > 0.

3. Cauchy problem

In this section we use Theorem 2.3 to establish the existence of local and global

solutions of (1.3). To this end, we introduce a subspace of H1
r . Let ω > 0 and

Hω = {u ∈ H1
r ;

∫

|x|2|u|2 < +∞}with the norm ‖u‖2
Hω

=
∫

(|∇u|2+|x|2|u|2+ω|u|2).

Clearly, Hω is a Hilbert space whose inner product is defined by 〈u, v〉 = ℜ
∫

(∇u∇v+

|x|2uv+ ωuv), where v is the complex conjugate of v and ℜ means taking real part.
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Proposition 3.1. Let N > 2, b > 0 and 2 + 2b/(N − 1) < p < p̃, where p̃ is

defined in Theorem 2.3. For any ϕ0 ∈ Hω there is T > 0 and a unique solution ϕ

of (1.3) with ϕ ∈ C([0, T ), Hω) and ϕ(0) = ϕ0. Moreover, we have the conserved

particle number

(3.1)
∫

|ϕ|2 ≡

∫

|ϕ0|
2

and the conserved energy

(3.2) E(ϕ) =
1

2

∫

(|∇ϕ|2 + |x|2|ϕ|2) −
1

p

∫

|x|b|ϕ|p

for all t ∈ [0, T ), where either T = +∞ or T < +∞ and lim
t→T−

‖ϕ‖Hω
= +∞.

P r o o f. The proof follows bythe standard method (see e.g. [6], [15], [21] and the

references therein) with help of Theorem 2.3. �

Next, we have the following virial identity which originated from Glassey [16]

Proposition 3.2. Let N > 2, b > 0 and 2 + 2b/(N − 1) < p < p̃, where p̃ is

defined in Theorem 2.3. Let ϕ(t) ∈ C1([0, T (ϕ0)), Hω) be a solution of Eq. (1.1)

with initial condition ϕ(0) = ϕ0(x) ∈ Hω . Denote

(3.3) h(t) = ‖xϕ(t)‖2
2.

Then for 0 6 t < T (ϕ0) one has

(3.4) h′′(t) = 8

∫

(

|∇ϕ(t)|2 − |x|2|ϕ(t)|2 −
Np− 2N − 2b

2p
|x|b|ϕ(t)|p

)

.

P r o o f. We only prove Eq. (3.4) formally. Since ϕ satisfies Eq. (1.3), we have

ϕt = i(∆ϕ− |x|2ϕ+ |x|b|ϕ|p−2ϕ).

Therefore

h′(t) = 2Re
∫

|x|2ϕ̄ϕt = 4Im
∫

ϕ̄x∇ϕ

and

h′′(t) = 4Im
∫

(ϕ̄tx∇ϕ + ϕ̄x∇ϕt)

= 4Im
∫

ϕ̄tx∇ϕ− 4Im
∫

ϕt(Nϕ̄+ x∇ϕ̄)

= −4Im
∫

ϕt(Nϕ̄+ 2x∇ϕ̄)

= −4Re
∫

(Nϕ̄+ 2x∇ϕ̄)(∆ϕ − |x|2ϕ+ |x|b|ϕ|p−2ϕ).
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Recall that div(|x|bx) = (N + b)|x|b and by direct computations, one has

Re
∫

(Nϕ̄+ 2x∇ϕ̄)∆ϕ = −2

∫

|∇ϕ|2;

Re
∫

(Nϕ̄+ 2x∇ϕ̄)|x|2ϕ = −2

∫

|x|2|ϕ|2;

Re
∫

(Nϕ̄+ 2x∇ϕ̄)|x|b|ϕ|p−2ϕ = N

∫

|x|b|ϕ|p + Re
∫

2x|x|b|ϕ|p−2ϕ∇ϕ̄

= N

∫

|x|b|ϕ|p +
2

p

∫

x|x|b∇(|ϕ|p)

= N

∫

|x|b|ϕ|p −
2

p

∫

|ϕ|p(N |x|b + b|x|b)

=
N(p− 2) − 2b

p

∫

|x|b|ϕ|p.

Therefore

h′′(t) = 8

(
∫

(|∇ϕ|2 − |x|2|ϕ|2) −
N(p− 2) − 2b

2p

∫

|x|b|ϕ|p
)

.

Proposition 3.3. Let N > 2, b > 0, 2 + 2b/(N − 1) < p < p̃ and ϕ0 ∈ Hω. If

2+2b/(N−1) < p < pc, then the existence time T obtained in Proposition 3.1 must

be infinite; if p = pc, then the existence time T is infinite for ‖ϕ0‖L2 sufficiently

small; if pc < p < p̃, then the existence time T is infinite for ‖ϕ0‖Hω
sufficiently

small.

P r o o f. From Proposition 3.1 we know that for ϕ0 ∈ Hω,
∫

(|∇ϕ|2 + |x|2|ϕ|2) = 2E(ϕ0) +
2

p

∫

|x|b|ϕ|p.

It then follows from Theorem 2.3 that

(3.5)
∫

(|∇ϕ|2 + |x|2|ϕ|2) 6 2E(ϕ0)+C

(
∫

|∇ϕ|2
)

Np−2N−2b
4

(
∫

|ϕ|2
)

2N+2b+2p−Np
4

.

If 2 + 2b/(N − 1) < p < pc, then an application of the Young inequality yields

(3.6)
∫

(|∇ϕ|2 + |x|2|ϕ|2) 6 2E(ϕ0) + δ

∫

|∇ϕ|2 + Cδ

(
∫

|ϕ|2
)

2N+2b+2p−Np

2N+2b+4−Np

.

Choosing δ < 1, we conclude from (3.1) and (3.6) that
∫

(|∇ϕ|2+|x|2|ϕ|2) is controlled

from above by a positive constant, which implies that T = +∞. If N > 1 + 1
2b and

p = pc, we deduce from (3.5) that

∫

(|∇ϕ|2 + |x|2|ϕ|2) 6 2E(ϕ0) + C

∫

|∇ϕ|2
(

∫

|ϕ0|
2

)

2+b
N

.
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If ‖ϕ0‖L2 is sufficiently small, we obtain again that the existence time T = +∞.

Finally, if pc < p < p̃, then again using (3.5), one gets that the existence time T is

infinite for ‖ϕ0‖Hω
sufficiently small. �

Remark. When p = pc, the expression “sufficiently small“ appearing in Propo-

sition 3.3 is vague. We will give a qualitative description on how a small ϕ0 ensures

the global existence of a solution to (1.3) below.

4. Ground-state solutions

The focus of this section is the standing-wave solutions to Eq. (1.3) of the form

ϕ(x, t) = eiωtϕ(x) (ω > 0) with ϕ ∈ Hω, a real-valued function.

Substituting eiωtϕ(x) into Eq. (1.3), we have the elliptic equation

(4.1) −∆ϕ+ |x|2ϕ+ ωϕ− |x|b|ϕ|p−2ϕ = 0, ϕ ∈ Hw.

Define a functional J on Hω by

(4.2) J(u) =
1

2

∫
(

|∇u|2 + |x|2|u|2 + ω|u|2
)

−
1

p

∫

|x|b|u|p.

By Theorem 2.3, the functional J is a well-defined on Hω when b > 0, ω > 0, and

2+2b/(N−1) < p < p̃ with N > 2. It is clear that there is one-to-one correspondence

between the weak solution of (4.1) and the critical point of (4.2). Define another

functional I in Hω by

(4.3) I(u) =

∫

(|∇u|2 + |x|2|u|2 + ω|u|2 − |x|b|u|p).

Define the set N = {u ∈ Hω ; I(u) = 0, u 6= 0} and

(4.4) dN = inf
u∈N

J(u).

Definition 4.1. We say that ϕ ∈ Hω is a ground-state solution of Eq. (4.1) if

ϕ 6= 0, J ′(ϕ) = 0, J(ϕ) = dN and J(ϕ) 6 J(ψ) for any ψ ∈ {ψ ∈ Hω ; J ′(ψ) = 0}.
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Theorem 4.2. Assume ω > 0, N > 2 and b > 0. If 2 + 2b/(N − 1) < p < p̃, then

dN > 0 and dN is achieved at a ground-state solution ϕ of Eq. (4.1).

Remark. When N > 3, ω > 0, b > 0 and 2 + 2b/(N − 1) < p < 2N/(N − 2) +

2b/(N − 1), one can use Rother’s inequality [23] to prove Theorem 4.2 directly fol-

lowing an argument of Sintzoff et al [25]. However, it seems that the method by

Sintzoff et al [25] cannot be applied to the case of N = 2 since Rother’s inequality

holds only for N > 3.

P r o o f of Theorem 4.2. Due to the above remark, it suffices to prove this

theorem in the case of N = 2. On the other hand, when b = 0, the existence of the

ground state solution of Eq. (4.1) has been studied extensively, cf. [11]. So we only

consider the case b > 0, N = 2 and 2 + 2b < p < +∞. The proof is divided into five

steps.

Step 1. We prove that dN > 0. In fact, for any u ∈ N we have from Theorem 2.3

that

‖u‖2
Hω

=

∫

|x|b|u|p 6 C

(
∫

|∇u|2
)

p−2−b

2
(

∫

|u|2
)

2+b
2

6 C1‖u‖
p
Hω
.

So ‖u‖Hω
> C2 > 0 and J(u) = (1

2 − 1/p)‖u‖2
Hω

> C3 > 0. It then turns out that

dN > 0.

Step 2. Let {un} ⊂ N be a minimizing sequence of dN . We obtain from Ekeland’s

variational principle [31, Page 39, Theorem 2.4] that there is {ϕn} ⊂ N such that:

J(ϕn) 6 dN +
1

n2
, ‖J ′(ϕn)‖(Hω)∗ <

1

n
, ‖ϕn − un‖Hω

<
1

n
.

Therefore

(4.5) J(ϕn) → dN , J ′(ϕn) → 0, n→ +∞.

From (4.5) we know that for n large

(4.6) dN + o(1) =
(1

2
−

1

p

)

‖ϕn‖
2
Hω
,

which implies that {ϕn} is bounded in Hω. Going if necessary to a subsequence, still

denoted by {ϕn}, we may assume that ϕn ⇀ ϕ weakly in Hω and ϕn → ϕ a.e. in

R
N . Hence for any ψ ∈ Hω we have

∫

(∇ϕn∇ψ + |x|2ϕnψ + ωϕnψ) →

∫

(∇ϕ∇ψ + |x|2ϕψ + ωϕψ).
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Moreover, from |x|b|ϕn|p−2ϕn → |x|b|ϕ|p−2ϕ a.e. in RN and the Lebesgue dominated

convergence theorem we get that

∫

|x|b|ϕn|
p−2ϕnψ →

∫

|x|b|ϕ|p−2ϕψ.

Consequently,

〈J ′(ϕn), ψ〉 →

∫

(∇ϕ∇ψ + |x|2ϕψ + ωϕψ − |x|b|ϕ|p−2ϕψ),

which implies that J ′(ϕ) = 0.

Step 3. We prove that ϕ 6= 0, arguing by a contradiction. Assume that ϕ = 0,

i.e., ϕn ⇀ 0 weakly in Hω . We claim that
∫

|x|b|ϕn|p → 0 (n → +∞). Indeed, for

any ε > 0, we write

∫

|x|b|ϕn|
p =

(
∫

|x|6ε

+

∫

ε6|x|61/ε

+

∫

|x|>1/ε

)

|x|b|ϕn|
p.

We first consider the term
∫

|x|6ε |x|
b|ϕn|

p. Since b > 0, we obtain from the standard

Gagliardo-Nirenberg inequality that

(4.7)
∫

|x|6ε

|x|b|ϕn|
p 6 εb

∫

|x|6ε

|ϕn|
p

6 Cεb

(
∫

|∇ϕn|
2

)

p−2
2

(
∫

|ϕn|
2

)

6 C1ε
b,

where use has been made of the fact that {ϕn} is bounded in Hω. It follows that
∫

|x|6ε |x|
b|ϕn|p tends to 0 uniformly in n as ε → 0. On the other hand, as {ϕn} is

bounded in Hω and N = 2, we deduce from Strauss’ inequality that

(4.8)
∫

|x|>1/ε

|x|b|ϕn|
p =

∫

|x|>1/ε

|x|b−2− p−2
2 |x|

p−2
2 |ϕn|

p−2|x|2|ϕn|
2

6 C

(
∫

|∇ϕn|
2

)

p−2
4

(
∫

|ϕn|
2

)

p−2
4

∫

|x|>1/ε

|x|b−2− p−2
2 |x|2|ϕn|

2

6 C
(1

ε

)b−2− p−2
2

.

It follows from b− 2 − 1
2 (p− 2) < 0 and {ϕn} being bounded in Hω that the above

integral tends to 0 uniformly in n as ε→ 0.
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For the term
∫

ε6|x|61/ε
|x|b|ϕn|p, because {ϕn} is bounded in Hω, we have first

from the Rellich compact embedding theorem that

∫

ε6|x|6 1
ε

|ϕn|
2 → 0 as n→ +∞.

Using Strauss’ inequality we get

(4.9)
∫

ε6|x|61/ε

|x|b|ϕn|
p 6 C|ϕn|

p−2
∞

∫

ε6|x|61/ε

|ϕn|
2 → 0 as n→ +∞.

Since ε is arbitrary, we obtain from (4.7), (4.8) and (4.9) that
∫

|x|b|ϕn|p → 0 as

n → +∞. However, Step 1 and Step 2 imply that there is a positive constant C0

such that
∫

|x|b|ϕn|p = ‖ϕn‖2
Hω

> C0. This is a contradiction. Hence, we conclude

that ϕ 6= 0.

Step 4. The value dN is achieved at ϕ. Indeed, from Step 2 and Step 3, we have

that ϕ ∈ N . Now for n large,

dN + o(1) = J(ϕn) =
1

2
‖ϕn − ϕ‖2

Hω
+

1

2
‖ϕ‖Hω

−
1

p

∫

|x|b|ϕ|p + o(1)

> J(ϕ) > dN .

It follows that J(ϕ) = dN .

Step 5. We prove that ϕ is a ground state solution of Eq. (4.1). Indeed, from

the previous arguments we know that ϕ 6= 0, J ′(ϕ) = 0 and J(ϕ) = dN . Now for

any nonzero ψ satisfying J ′(ψ) = 0 we have that I(ψ) = 〈J ′(ψ), ψ〉 = 0. So ψ ∈ N .

The definition of dN implies that J(ϕ) 6 J(ψ). This completes the proof of the

theorem. �

5. Invariant sets and applications

Having established local well-posedness for the initial-value problem under study

and obtained the existence of ground-state solutions for Eq. (4.1), attention is paid

to whether the locally defined solution can be extended to the entire time interval.

To this end, we construct several cross-invariant sets under the flow generated

by Eq. (1.3). Using these cross-invariant sets enables us to establish a criterion for

global existence and blow-up of solutions to Eq. (1.3).

From now on, we always assume that N > 2 and ω > 0.
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Define a functional on Hω by

Q(u) =

∫

(

|∇u|2 − |x|2|u|2 −
Np− 2N − 2b

2p
|x|b|u|p

)

.

Let

dM = inf{J(u) ; u ∈ M},

where

M = {u ∈ Hω ; I(u) < 0, Q(u) = 0}.

To construct the cross-invariant sets, we need a series of lemmas.

Lemma 5.1. If dN is achieved for ϕ, then Q(ϕ) = 0.

P r o o f. Let ϕη(x) = η
N
2 ϕ(ηx). Since ϕ ∈ Hω is a ground-state solution of

Eq. (4.1), we have ∂ηϕ
η ∈ Hω and ∂ηJ(ϕη)

∣

∣

η=1
=

〈

J ′(ϕ), ∂ηϕ
η
∣

∣

η=1

〉

= 0. Note that

J(ϕη) =

∫

(η2

2
|∇ϕ|2 +

η−2

2
|x|2|ϕ|2 +

ω

2
|ϕ|2 −

1

p
η

Np−2b−2N

2 |x|b|ϕ|p
)

.

We obtain Q(ϕ) = ∂ηJ(ϕη)
∣

∣

η=1
= 0. �

Lemma 5.2. Assume N > 2 and ω > 0. If b > 0, thenM is not empty provided

one of the following assumptions holds.

(A1) N > 1 + 1
2b and pc 6 p < p̃;

(A2) N 6 1 + 1
2b and 2 + 2b/(N − 1) < p < p̃.

Remark. Note that when N 6 1 + 1
2b, then 2 + 2b/(N − 1) > pc holds. So

p > 2 + 2b/(N − 1) implies that p > pc. Hence we only need to prove Lemma 5.2

under assumption (A1).

P r o o f of Lemma 5.2. Assume (A1). Let ϕ be a minimizer of dN . It follows

from Lemma 5.1 that Q(ϕ) = 0, which implies that

∫

|∇ϕ|2 −
Np− 2N − 2b

2p

∫

|x|b|ϕ|p =

∫

|x|2|ϕ|2 > 0.

Choosing ξ0 such that

1 < ξ0 <

(
∫

|∇ϕ|2
/Np− 2N − 2b

2p

∫

|x|b|ϕ|p
)

1
p−2

and denoting v = ξ0ϕ, we get from I(ϕ) = 0 and Q(ϕ) = 0 that

I(v) < 0 and Q(v) < 0.
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Let vµ(x) = µ(2+b)/(p−2)v(µx). We then have

I(vµ) = µ
2(N+b)−(N−2)p

p−2

∫
(

|∇v|2 − |x|b|v|p
)

+ ωµ
2(2+b)−N(p−2)

p−2

∫

|v|2 + µ
8+2N+2b−(N+2)p

p−2

∫

|x|2|v|2

and

Q(vµ) = µ
2(N+b)−(N−2)p

p−2

∫

(

|∇v|2 −
N(p− 2) − 2b

2p
|x|b|v|p

)

− µ
8+2N+2b−(N+2)p

p−2

∫

|x|2|v|2.

Since p > pc, we infer that Q(vµ) → Q(v) < 0 as µ → 1. On the other hand,

from the choice of v = ξ0ϕ we know that

∫

(

|∇v|2 −
Np− 2N − 2b

2p
|x|b|v|p

)

> 0.

In view of 2(N + b)− (N − 2)p > 0 and 8 + 2N + 2b− (N + 2)p < 0, it is easy to see

that

Q(vµ) → +∞ as µ→ +∞.

It then turns out that there is µ∗ > 1 such that Q(vµ∗
) = 0.

Now we turn to I(vµ∗
). Since µ∗ > 1 and 2(2+b)−N(p−2) < 2(N+b)−(N−2)p

and 8 + 2N + 2b− (N + 2)p < 2(N + b) − (N − 2)p, it implies that

I(vµ∗
) < µ

2(N+b)−(N−2)p
p−2

∗ I(v) < 0.

Hence vµ∗
∈ M. The proof of Lemma 5.2 is complete. �

Lemma 5.3. Under the same assumptions as in Lemma 5.2, dM > 0.

P r o o f. From the remark to Lemma 5.2, we only need to prove this lemma

under assumption (A1). To this end, we first treat the case pc < p < p̃. For any

u ∈ M, we have from I(u) < 0 and Theorem 2.3 that

‖u‖2
Hω

<

∫

|x|b|u|p 6 C

(
∫

|∇u|2
)

Np−2N−2b
4

(
∫

|u|2
)

2N+2b+2p−Np
4

6 C‖u‖p
Hω
.
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Since p > 2, it follows that ‖u‖Hω
> C0 > 0. In view of Q(u) = 0 and p > pc, we

deduce that

J(u) >

(1

2
−

2

Np− 2N − 2b

)

‖u‖2
Hω

> C > 0.

Thus we have that dM > 0 for pc < p < p̃.

Next, we consider the case p = pc. Arguing by a contradiction, if dM = 0 then

there is a sequence {un} ⊂ M such that

Q(un) = 0, I(un) < 0 for all n

and J(un) → 0 as n→ ∞. Since p = pc and

J(un) =

∫

(|x|2|un|
2 +

ω

2
|un|

2),

it follows from J(un) → 0 that
∫

|x|2|un|2 → 0 and
∫

|un|2 → 0. Again using

Theorem 2.3 yields

∫

|x|b|un|
p 6 C0

∫

|∇un|
2

(
∫

|un|
2

)

p−2
2

for all n > 1, where C0 is independent of u. On the other hand, in view of I(un) < 0

and Theorem 2.3 and by the fact that
∫

|x|2|un|2 → 0 and
∫

|un|2 → 0 we get that

for C0 as above and a large n

∫

|x|b|un|
p > ‖un‖

2
Hω

> C0

∫

|∇un|
2

(
∫

|un|
2

)

p−2
2

.

This is a contradiction. The proof of Lemma 5.3 is complete. �

5.1. Cross-invariant sets.

A set S is said to be invariant under the flow generated by Eq. (1.3) if ϕ(t) ∈ S

for t ∈ [0, T ) as long as ϕ0 ∈ S. Denote min{dN , dM} := d > 0. Let

K− = {u ∈ Hω ; J(u) < d, I(u) < 0, Q(u) < 0},

K+ = {u ∈ Hω ; J(u) < d, I(u) < 0, Q(u) > 0},

S− = {u ∈ Hω ; J(u) < d, I(u) < 0},

and

S+ = {u ∈ Hω ; J(u) < d, I(u) > 0}.
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Proposition 5.4. Assume N > 2, b > 0 and ω > 0. If assumption (A1) or (A2)

is satisfied, then K∓ as well as S∓ are invariant sets under the flow generated by

Eq. (1.3). We refer to K∓ and S∓ as the cross-invariant sets under the flow of (1.3).

P r o o f. Similarly to the proof of Lemma 5.2, it suffices to prove this proposition

under assumption (A1). We only prove that K− is an invariant set since the proof of

the other cases is similar. Let ϕ(t) be the solution of (1.3) with initial data ϕ0 ∈ K−.

In view of the conserved identities
∫

|ϕ|2 ≡
∫

|ϕ0| and

E(ϕ) =

∫

(1

2
(|∇ϕ|2 + |x|2|ϕ|2) −

1

p
|x|b|ϕ|p

)

≡ E(ϕ0),

we get immediately that J(ϕ) ≡ J(ϕ0). Thus J(ϕ) < d.

We now claim that I(ϕ(t)) < 0 for t ∈ [0, T ). If this were not true, then by the

continuity there would be a t0 ∈ (0, T ) such that I(ϕ(t0)) = 0. Then, since ϕ(t0) 6= 0,

we know that J(ϕ(t0)) > dN > d. This contradicts the inequality J(ϕ(t)) < d for

all t ∈ (0, T ). Therefore I(ϕ(t)) < 0 for t ∈ [0, T ).

Finally, we show Q(ϕ(t)) < 0 for t ∈ [0, T ). If this were not true, then by the

continuity there would be a t1 ∈ (0, T ) such that Q(ϕ(t1)) = 0. Since I(ϕ(t1)) < 0,

we have that ϕ(t1) ∈ M. This implies that J(ϕ(t1)) > dM > d, which contradicts

the inequality J(ϕ(t)) < d ∀t ∈ [0, T ). Consequently, Q(ϕ(t)) < 0 ∀t ∈ [0, T ). �

5.2. Sharp global existence.

Theorem 5.5. Assume that N > 2, b > 0, ω > 0, and 2+ 2b/(N − 1) < p < p̃. If

ϕ0 ∈ K+ ∪S+, then the solution ϕ(t) of Eq. (1.3) with initial data ϕ0 exists globally

in time.

P r o o f. In view of Proposition 3.3, we only need to prove this theorem in

the case that b > 0 and assumption (A1) or (A2) holds. Moreover, from the remark

after Lemma 5.2, it suffices to prove this theorem under assumption (A1). Due to the

presence of inhomogeneous nonlinearity, we need a quite different scaling argument.

First, let ϕ0 ∈ K+. Proposition 5.4 implies that the solution ϕ(t) of (1.3) belongs to

K+ for any t ∈ [0, T ). Now for any fixed t ∈ [0, T ) we have J(ϕ) < d and Q(ϕ) > 0.

It follows from the expressions of J and Q that

(5.1)
∫

(Np− 2N − 2b− 4

2(Np− 2N − 2b)
|∇ϕ|2 +

Np− 2N − 2b+ 4

2(Np− 2N − 2b)
|x|2|ϕ|2 +

ω

2
|ϕ|2

)

< d.

Now we treat the case p = pc. In this case, relation (5.1) implies

(5.2)
∫

(

|x|2|ϕ|2 +
ω

2
|ϕ|2

)

< d.
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Put ϕµ = µ(N+b)/pϕ(µx). Then using p = pc we get

(5.3) Q(ϕµ) = µ
4+2b

N+2+b

∫

|∇ϕ|2−µ−2− 2N
N+2+b

∫

|x|2|ϕ|2−

∫

Np− 2N − 2b

2p
|x|b|ϕ|p.

It follows from Q(ϕ) > 0 and Q(ϕµ) < 0 for µ small enough that there exists

0 < µ1 < 1 such that Q(ϕµ1) = 0. Again using the expressions for J and Q, we have

(5.4)

J(ϕµ1 ) =

∫

(|x|2|ϕµ1 |
2 +

ω

2
|ϕµ1 |

2) dx = µ
−2− 2N

N+2+b

1

∫

|x|2|ϕ|2 + µ
−2N

N+2+b

1

∫

ω

2
|ϕ|2.

Since 0 < µ1 < 1 and −2 − 2N/(N + 2 + b) < −2N/(N + 2 + b), it follows from

(5.2) that

(5.5) J(ϕµ1) < µ
−2− 2N

N+2+b

1 d.

Next, we turn to I(ϕµ1), which has two possibilities. In the case I(ϕµ1) < 0, the

equality Q(ϕµ1) = 0 and Lemma 5.3 imply that

(5.6) J(ϕµ1) > dM > d > J(ϕ).

It follows that J(ϕ) − J(ϕµ1) < 0, that is

(5.7)
(

1−µ
4+2b

N+2+b

1

)

∫

1

2
|∇ϕ|2+

(

1−µ
−2− 2N

N+2+b

1

)

∫

1

2
|x|2|ϕ|2+

(

1−µ
−2N

N+2+b

1

)

∫

ω

2
|ϕ|2 < 0.

This implies that
∫

|∇ϕ|2 < C
(∫

|ϕ|2 +
∫

|x|2|ϕ|2
)

. Combining this estimate with

(5.2), we obtain

(5.8)
∫

|∇ϕ|2 < C.

For the other case of I(ϕµ1 ) > 0, we have from (5.5) that

(5.9) J(ϕµ1) −
1

p
I(ϕµ1) < µ

−2− 2N
N+2+b

1 d.

It follows that

(5.10)

µ
4+2b

N+2+b

1

∫

|∇ϕ|2 + µ
−2− 2N

N+2+b

1

∫

|x|2|ϕ|2 + µ
−2N

N+2+b

1

∫

ω|ϕ|2 <
2p

p− 2
µ
−2− 2N

N+2+b

1 d.

Thus

(5.11)
∫

|∇ϕ|2 < C.
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It follows from (5.8) and (5.11) that in the case p = pc,
∫

|∇ϕ|2 is bounded for

all t ∈ [0, T ). Therefore, it follows from (5.2) and Proposition 3.1 that ϕ(t) exists

globally in time.

For the case pc < p < p̃, we also get from (5.1) that

(5.12)
∫

(|∇ϕ|2 + |x|2|ϕ|2) < C.

Proposition 3.1 again implies that ϕ(t) exists globally in time.

Up to now, we have proved that for ϕ0 ∈ K+, Theorem 5.5 holds. The proof of

ϕ0 ∈ S+ is similar but quite simpler. We omit the details. The proof of Theorem 5.5

is complete. �

Now we are in a position to give a qualitative answer to how a small ϕ0 can ensure

the existence of global solutions (1.3) in the case of p = 2 + (4 + 2b)/N .

Corollary 5.6. Let ϕ0 ∈ Hω,
∫

(|∇ϕ0|2 + |x|2|ϕ0|2 + ω|ϕ0|2) < 2d, b > 0,

N > 1 + 1
2b and p = pc. Then the solution ϕ(t) of (1.3) with initial data ϕ0 exists

globally in time.

P r o o f. Since
∫

(|∇ϕ0|2 + |x|2|ϕ0|2 + ω|ϕ0|2) < 2d, we know that J(ϕ0) < d.

Moreover, we claim that I(ϕ0) > 0. Otherwise, there is a λ ∈ (0, 1] such that

I(λϕ0) = 0. Thus J(λϕ0) > d. On the other hand,

∫

λ2(|∇ϕ0|
2 + |x|2|ϕ0|

2 + ω|ϕ0|
2) < 2λ2d 6 2d.

It follows that J(λϕ0) < d. This is a contradiction. Therefore we have ϕ0 ∈ S+.

The corollary follows from Theorem 5.5. �

5.3. Blow-up solutions.

In this subsection we will use the cross-invariant sets constructed in Section 5.1 to

obtain a blow-up result for Eq. (1.3) with suitable initial data ϕ0. The idea has been

previously introduced in [3], [24], [19], [32], but we need a rather different scaling

argument due to the unbounded inhomogeneity of nonlinearity.

Theorem 5.7. Assume ω > 0, b > 0, N > 2 and let assumption (A1) or (A2)

hold. If ϕ0 ∈ K−, then the solution ϕ(t) of Eq. (1.3) with initial data ϕ0 blows up

in finite time, i.e. there is a T > 0 such that

(5.13) lim
t→T−

|∇ϕ(t)|2 = +∞.
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P r o o f. As we mentioned before, it suffices to prove this theorem only under

assumption (A1). By the previous argument, we always have ϕ(t) ∈ K− as long as

ϕ0 ∈ K−. For any fixed t ∈ [0, T ), denote uλ(x) = λ(N+b)/pϕ(λx, t) and u(·) = ϕ(·, t).

A direct calculation shows that

(5.14) I(uλ) =

∫

(λ
2N+2b+2p−Np

p |∇u|2 + λ
2N+2b−pN−2p

p |x|2|u|2

+ ωλ
2N+2b−Np

p |u|2 − |x|b|u|p) dx

and

(5.15) Q(uλ) =

∫

(

λ
2N+2b+2p−Np

p |∇u|2 − λ
2N+2b−pN−2p

p |x|2|u|2

−
Np− 2N − 2b

2p
|x|b|u|p

)

dx.

Since 2N+2b+2p−Np > 0 and 2N +2b−pN−2p < 0, we have that Q(uλ) → +∞

as λ → +∞. On the other hand, Q(uλ) → Q(u) < 0 as λ→ 1. It then follows from

the fact that Q(uλ) is continuous for λ > 1 that there is λ∗ > 1 such that Q(uλ∗) = 0

and when λ ∈ [1, λ∗), then Q(uλ) < 0. For λ ∈ [1, λ∗), since I(u) < 0, there are two

possibilities for the sign of I(uλ):

(i) I(uλ) < 0 for all λ ∈ [1, λ∗], or

(ii) ∃ λ1 with 1 < λ1 6 λ∗ such that I(uλ1) = 0.

In the case (i), we have that uλ∗ ∈ M. We conclude that J(uλ∗) > dM > d.

Moreover, we have from λ∗ > 1 and the assumption on p that

(5.16)

J(u) − J(uλ∗) =

∫

1

2

((

1 − λ∗
2N+2b+2p−Np

p

)

|∇u|2 +
(

1 − λ∗
2N+2b−pN−2p

p

)

|x|2|u|2

+ ω
(

1 − λ∗
2N+2b−Np

p
)

|u|2
)

>
1

2

∫

((

1 − λ∗
2N+2b+2p−Np

p
)

|∇u|2 −
(

1 − λ∗
2N+2b−pN−2p

p
)

|x|2|u|2
)

dx

=
1

2
(Q(u) −Q(uλ∗)) >

1

2
Q(u).

In the case (ii), we have I(uλ1) = 0 and Q(uλ1) 6 0, i.e. uλ1 ∈ N . So J(uλ1) >

dN > d and a similar computation shows that

(5.17) J(u) − J(uλ1) >
1

2
(Q(u) −Q(uλ1)) >

1

2
Q(u).

In both cases, we have

Q(u) < 2(J(u) − d).
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Notice that for V (t) = 1
2

∫

|x|2|ϕ|2 dx we have from Proposition 3.2

V ′′(t) = 4Q(ϕ).

Now using J(ϕ) = J(ϕ0) and ϕ0 ∈ K−, we obtain that

(5.18) V ′′(t) < 8(J(ϕ) − d) = 8(J(ϕ0) − d) := δ0 < 0.

Thus, combining the above estimate of V with V (0) = 1
2

∫

|x|2|ϕ0|2 dx, we deduce

that there exists a T0 > 0 such that

(5.19) lim
t→T−

0

V (t) = 0.

Observing that

∫

|ϕ|2 6 C

(
∫

|x|2|ϕ|2 dx

)
1
2
(

∫

|∇ϕ|2 dx

)
1
2

,

we obtain from the conservation of particle number, i.e.,
∫

|ϕ|2 ≡
∫

|ϕ0|2 > 0, that

there is T > 0 such that (5.13) holds. The proof of Theorem 5.7 is complete. �

6. Strong instability of standing-wave solutions

In the present section, attention is now turned to proving the strong instability of

standing waves of Eq. (1.3) via blow-up. Recall from Section 4 that, for any ω > 0,

eiωtϕ is a standing-wave solution of Eq. (1.3).

Definition 6.1. A standing-wave solution eiωtϕ is called Hω-strongly unstable

with respect to (1.3) if for any δ > 0 there is ϕ0 ∈ Hω satisfying

‖ϕ0 − ϕ‖Hω
< δ,

but the solution ϕ(t) of Eq. (1.3) with initial data ϕ(x, 0) = ϕ0 blows up at finite

time, i.e., there is a T > 0 such that

(6.1) lim
t→T−

|∇ϕ|2 = +∞.
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Theorem 6.2. Assume that N > 2 and b > 0. If assumption (A1) or (A2)

holds and ω > 0 is such that dM > dN , then for the minimizer ϕ ∈ Hω of dN , the

standing-wave solution ϕ(t, x) = eiωtϕ(x) of (1.3) is Hω-strongly unstable.

P r o o f. Again, we only need to consider assumption (A1). Since ϕ is the

minimizer of dN and I(ϕ) = 0, Lemma 5.1 implies that

(6.2)
∫

|∇ϕ|2 −

∫

|x|2|ϕ|2 =
Np− 2N − 2b

2p

∫

|x|b|ϕ(x)|p > 0

and J(ϕ) = dN = d. By the assumption on p, we deduce from I(ϕ) = 0 that

J(λϕ) < J(ϕ) = d for any λ > 1.

Moreover, using the fact that I(ϕ) = 0 and (6.2) holds, we deduce that for any λ > 1,

I(λϕ) = (λ2 − λp)

∫

(|∇ϕ|2 + |x|2|ϕ|2 + ω|ϕ|2) < 0

and

Q(λϕ) = (λ2 − λp)

∫

(|∇ϕ|2 − |x|2|ϕ|2) dx < 0,

which implies that λϕ ∈ K− for λ > 1. Now for any δ > 0 we take ϕ0 = λϕ with

λ > 1 such that

(6.3) ‖ϕ0 − ϕ‖Hω
< δ.

Since ϕ ∈ Hω is a solution of Eq. (4.1) and has an exponential decay at infinity, we

know from Theorem 5.7 that the solution ϕ(t) of Eq. (1.3) with initial data ϕ0 = λϕ

blows up in finite time. The proof of Theorem 6.2 is complete. �
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