[1] Birkhoff, G.:
Integration of functions with values in a Banach space. Trans. Am. Math. Soc. 38 (1935), 357-378.
MR 1501815 |
Zbl 0013.00803
[2] Piazza, L. Di, Musiał, K.:
Characterizations of Kurzweil-Henstock-Pettis integrable functions. Stud. Math. 176 (2006), 159-176.
DOI 10.4064/sm176-2-4 |
MR 2264361
[5] Gámez, J. L., Mendoza, J.:
On Denjoy-Dunford and Denjoy-Pettis integrals. Stud. Math. 130 (1998), 115-133.
MR 1623348
[7] Gordon, R. A.:
The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics, Vol. 4. American Mathematical Society (AMS) Providence (1994).
DOI 10.1090/gsm/004/09 |
MR 1288751
[9] Lee, Peng Yee, Výborný, R.:
The Integral: An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series, Vol. 14. Cambridge University Press Cambridge (2000).
MR 1756319
[10] Lindenstrauss, J., Tzafriri, L.:
Classical Banach Spaces. I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Springer Berlin-Heidelberg-New York (1977).
MR 0500056
[13] Saks, S.:
Theory of the Integral. Dover Publications Inc. New York (1964).
MR 0167578
[14] Talagrand, M.:
Pettis Integral and Measure Theory. Mem. Am. Math. Soc. No. 307. (1984).
MR 0756174