Article
Keywords:
nonmeasurable set; Bernstein set; Polish ideal space
Summary:
Let $(X,\mathbb I)$ be a Polish ideal space and let $T$ be any set. We show that under some conditions on a relation $R\subseteq T^2\times X$ it is possible to find a set $A\subseteq T$ such that $R(A^2)$ is completely $\mathbb I $-nonmeasurable, i.e, it is $\mathbb I$-nonmeasurable in every positive Borel set. We also obtain such a set $A\subseteq T$ simultaneously for continuum many relations $(R_\alpha )_{\alpha <2^\omega }.$ Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak.
References:
[2] Cichoń, J., Morayne, M., Rałowski, R., Ryll-Nardzewski, Cz., {.Z}eberski, Sz.:
On nonmeasurable unions. Topology and its Applications 154 (2007), 884-893.
MR 2294636
[3] Ciesielski, K., Fejzić, H., Freiling, C.:
Measure zero sets with non-measurable sum. Real Anal. Exchange 27 (2001/02), 783-793.
MR 1923168
[4] Kharazishvili, A.:
Some remarks on additive properties of invariant $\sigma$-ideals on the real line. Real Anal. Exchange 21 (1995/96), 715-724.
MR 1407284 |
Zbl 0879.28026
[6] Rałowski, R., {.Z}eberski, Sz.:
Complete nonmeasurability in regular families. Houston Journal in Mathematics 34 (2008), 773-780.
MR 2448381
[7] Sierpiński, W.:
Sur la question de la measurabilite de la base de M. Hamel. Fundamenta Mathematicae 1 (1920), 105-111 \JFM 47.0180.03.
DOI 10.4064/fm-1-1-105-111