Previous |  Up |  Next

Article

Keywords:
configuration spaces; cohomological algebra; complex projective spaces
Summary:
In this paper we compute topological invariants for some configuration spaces of complex projective spaces. We shall describe Sullivan models for these configuration spaces.
References:
[1] Arnold, V. I.: The cohomology ring of dyed braids. Mat. Zametki 5 (1969), 227-231. MR 0242196
[2] Artin, E.: Theory of braids. Ann. of Math. 48 (1947), 101-126. DOI 10.2307/1969218 | MR 0019087 | Zbl 0030.17703
[3] Berceanu, B., Markl, M., Papadima, S.: Multiplicative models for configuration spaces of algebraic varieties. Topology 44 (2005), 415-440. DOI 10.1016/j.top.2004.10.002 | MR 2114955 | Zbl 1062.55017
[4] Cohen, F. R.: The homology of $C_{n+1}$-spaces, $n \geq 0$. In: The homology of iterated loop spaces, Lect. Notes in Math. 207-351 533 (1976).
[5] Cohen, F., Taylor, L.: Computations of Gel'fand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces. In Geometric applications of homology theory, I, Lect. Notes in Math. 106-143 657 (1978). MR 0513543
[6] Fadell, E. R., Hussaini, S. Y.: Geometry and topology of configuration spaces. Springer Monographs in Mathematics. Springer-Verlag Berlin (2001). MR 1802644
[7] Fulton, W., MacPherson, R.: A compactification of configuration spaces. Ann. Math. 139 (1994), 183-225. DOI 10.2307/2946631 | MR 1259368 | Zbl 0820.14037
[8] Kriz, I.: On the rational homotopy type of configuration spaces. Ann. Math. 139 (1994), 227-237. DOI 10.2307/2946581 | MR 1274092 | Zbl 0829.55008
[9] Totaro, B.: Configuration spaces of algebraic varieties. Topology 35 (1996), 1057-1067. DOI 10.1016/0040-9383(95)00058-5 | MR 1404924 | Zbl 0857.57025
Partner of
EuDML logo