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1. Introduction

Let X be a connected space. The topology of ordered configuration spaces :

F (X ; n) = {(x1, x2, . . . , xn) ∈ Xn | xi 6= xj ; i 6= j},

of n distinct labeled points in X has attracted considerable attention over the years.

The cohomology rings H∗(F (R2; n)) have been described by Arnold [1]. In his 1972

thesis F. Cohen extended Arnold’s computations to all Eulidean spaces; see [4]. For

X an m-dimensional real oriented manifold, the Leray spectral sequence of the in-

clusion F (X ; n) →֒ Xn has been described by Cohen-Taylor [5] and further analyzed

by Totaro [9]. With coefficient field K, the above Cohen-Taylor spectral sequence

converges multiplicatively to H∗(F (X ; n),K); it has the property E2 = Em; and the

differential graded algebra (Em, dm) depends only on n and the cohomology algebra

H∗(X ;K). Configuration spaces Rn+1 and Sn+1 are mostly studied in the literature,

particularly the case of n = 1 is in connection with classical braid theory, see [2].

Our aim in this paper is to find the Betti numbers and cohomology algebras

of configuration spaces of complex projective spaces CP
m and those of punctured

complex projective spaces
◦

CP
m = CP

m \ {pt}.
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Given X , a topological space with finite Betti numbers βi(X), we denote its

Poincaré series by

PX(t) =
∑

i>0

βi(X)ti.

In all computations of cohomology algebras we will use complex coefficients:

H∗(X) = H∗(X ;C).

In our proofs the basic tools are the Kriz model [8] for the configuration spaces of

an algebric projective manifold and also the punctured model for these spaces [3]. In

Section 2 we give a short presentation of these models. We shall compute Poincaré

polynomials for configuration spaces with < 5 points and also describe their coho-

mology algebras.

Theorem 1. The Poincaré polynomial of the configuration space F (CPm; 2) is

given by a product of cyclotomic polynomials:

PF (CPm;2)(t) =
∏

d|m(m+1)
d 6=1

ϕd(t
2).

Theorem 2. The multiplicative structure of the cohomological algebra of the

configuration space F (CPm; 2) is given by

H∗
(F (CPm;2))

∼=
C[a1, a2]

〈

am
1 + am−1

1 a2 + . . . + am
2 ; am+1

1 ; am+1
2

〉 ,

where deg a1 = deg a2 = 2.

Proposition 1. The multiplicative structure of cohomological algebra of the

configuration space F (
◦◦

CP
m, 1) is given by

H∗(F (
◦◦

CP
m, 1)) ∼=

C 〈x, z〉

〈xm, xz〉
,

where deg x = 2 and deg z = 2m − 1.

Proposition 2. The multiplicative structure of the cohomological algebra of the

configuration space F (
◦

CP
m, 2) is given by

H∗(F (
◦

CP
m, 2)) ∼=

C 〈y, z, w〉

〈ym, zm, ym−1z + . . . + yzm−1, yw, zw〉
,

where deg y = deg z = 2, deg w = 4m− 3.
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Theorem 3. If m 6 4 the Poincaré polynomial of the configuration space

F (CPm; 3) is given by

PF (CPm;3)(t) = (1 + t2 + t4 + . . . + t2m−2)[(1 + t2 + t4 + . . . + t2m−2)2 + t4m−1].

Theorem 4. If m 6 4 the multiplicative structure of the cohomological algebra

of the configuration spaces F (CPm; 3) is given by

H∗(F (CPm; 3)) ∼=
C 〈a, b1, b2, η〉

〈

m−1
∑

i=1

bm−i
1 bi

2, a
m+1, bm

1 , bm
2 , amη, b1η, b2η

〉 ,

where deg a = 2, and deg bi = 2, i ∈ {1, 2} and deg η = 4m − 1.

During the proofs we will describe completely the structure of the Serre spectral

sequences of the natural fibrations associated to these spaces.

2. Sullivan models for algebraic configuration spaces

In this section we present two models for configuration spaces of algebraic projec-

tive manifolds. The first model was introduced by Fulton-MacPherson [7] and next

a simplified version was given by Kriz [8].

Let M be a closed orientable manifold of dimension m with a fixed orientation

class ω ∈ Hm(M). For an arbitrary homogenous basis {ai}, i = 1, 2, . . . q, in H∗(M),

take the dual basis {bj}j=1,2,...q, (ai ∪ bj = δijω) and construct the diagonal class of

(M ; ω) by ∆ =
q
∑

i=0

ai ⊗ bi ∈ H∗(M2).

For a 6= b ∈ {1, 2, 3 . . . , n} let p∗a : H∗(M) −→ H∗(Mn) and

p∗ab : H∗(M2) −→ H∗(Mn) be the pullbacks of the projections maps

pa : Mn −→ M, pa(x1, . . . xa, . . . xn) = xa,

and

pab : Mn −→ M2, pab(x1, . . . xa, . . . , xb, . . . xn) = (xa, xb),

respectively.

Definition 1 [8]. Let H∗ be a Poincaré duality algebra of dimension 2m and ω

a fixed orientation class. Denote by H∗⊗n[Gab] the algebra over H⊗n with degree

2m − 1 exterior generators Gab, 1 6 a 6= b 6 n. The Kriz model E∗
n(H∗; ω, d) is the
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differential graded algebra (DGA) given by the quotient of H∗⊗n[Gab] modulo the

following relations:

1. Gab = Gba,

2. p∗a(x)Gab = p∗b(x)Gab, for x ∈ H∗;

3. GabGbc + GbcGca + GcaGab = 0.

The differential d of degree +1 is given by

d(p∗a(x)) = 0

and

d(Gab) = p∗ab(∆).

Simplifying the model of Fulton-Macpherson, Kriz proved:

Theorem 5 [8]. Let X be a complex projective manifold of dimension m with

cohomology algebra H = H∗(X ;Q). Then the DGA (E∗
n(H); d) is a rational model,

in the sense of Sullivan, of the configuration space F (X ; n).

Let H be an even-dimensional Poincaré duality algebra, as before. We are going to

consider another associated DGA, to be denoted by En

◦

(H). To begin with, let
◦

H be

the quotient algebra,
◦

H = H/C.ω, with multiplication induced from H . Note that,

when H = H∗(M ;C), with M a closed oriented manifold,
◦

H is nothing else but the

cohomology algebra of the non-compact punctured manifold
◦

M = M \ {pt}. Denote

by
◦

∆ the image of ∆ in
◦

H⊗2 and consider the induced differential d :
◦

H →
◦

H.

Definition 2 [3]. The punctured Kriz-model is the differential graded algebra

En(
◦

H) = E∗
n(

◦

H,
◦

∆), with the induced differential d.

Theorem 6 [3]. LetX be a 1-connected complex projective manifold of dimension

m with cohomology algebra H = H∗(X ;C). Then the DGA (E∗
n

◦

(H); d) is a complex

model, in the sense of Sullivan, of the configuration space F (
◦

X; n).

We use the standard notation Ed
n for the homogenous part of total degree d and

E∗
n[k] for the homogenous component of degree k in the exterior generators Gab; for

instance, En[0] = H⊗n and Gab ∈ E2m−1
n [1].
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3. Two points configuration spaces

Let X = CP
m and let E∗(n; m) be the Kriz model (En(H∗(CPm); xm)) where x

is a fixed generator of H2(CPm) and xm is the orientation class. The cohomology

algebra of X is given by H∗(X) = C[x]/
〈

xm+1
〉

with deg x = 2; i.e. H2i(X ;C) has

xi as a basis (0 6 i 6 m) and all other cohomology groups are zero.

First we construct the Kriz model E(2; m). Using Künneth formula we find the

canonical basis of H2i(X2) : xi ⊗ 1, xi−1 ⊗ x, . . . , 1 ⊗ xi. Now we add the exterior

part: (xi ⊗ 1)G12 = (1 ⊗ xi)G12 (i = 1, . . . , m), where the degree of G12 is 2m − 1.

The differential is given by:

d(G12) = p∗12(∆) = xm ⊗ 1 + xm−1 ⊗ x + . . . + 1 ⊗ xm.

P r o o f of Theorem 1. Now we will calculate the cohomology of (E(2; m), d). It

is obvious that if 0 6 k 6 m−1, Hk(F (X ; 2)) ∼= Ek hence β2k−1 = 0 and β2k = k+1.

In higher degrees the sequence of differentials is given by

E2m+2k−1 d
−→ E2m+2k d

−→ 0,

d((xk ⊗ 1)G12) = xm ⊗ xk + xm−1 ⊗ xk+1 + . . . + xk ⊗ xm,

so the first d is injective. As dim E2m+2k−1 = 1, the even Betti numbers are β2m+2k =

dimE2m+2k − 1 = (m − k + 1) − 1 = (m − k), and β2m+2k−1 = 0.

So the Poincaré polynomial is

PF (X;2)(t) = 1 + 2t2 + . . . + mt2(m−1) + mt2m + (m − 1)t2m+2 + . . . + t2(2m−1)

= (1 + t2 + . . . + t2(m−1))(1 + t2 + . . . + t2(m−1) + t2m).

We denote by ϕn(t) be the nth cyclotomic polynomial:

ϕn(t) =
∏

16i6n,(i,n)=1

(t − αi),

where α is a primitive root of tn − 1. We have, for every positive integer n,

tn − 1 =
∏

d|n

ϕd(t);

hence the Poincaré polynomial can be decomposed into irreducible factors in Z[t] as

PF (X;2)(t) =
∏

d|m(m+1)
d 6=1

ϕd(t
2).

�
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P r o o f of Theorem 2. Introducing the cohomology classes a1 = [x ⊗ 1] and

a2 = [1 ⊗ x] we have [xi ⊗ xj ] = [xi ⊗ 1][1 ⊗ xi] = ai
1a

j
2, therefore a1 and a2 are

generators of H∗(E(2); d). Then we have to prove that am+1
k = 0 and am

k 6= 0, where

k = 1, 2. The first one is clear because xm+1 ⊗ 1 = 0 and so [xm+1 ⊗ 1] = 0. But

xm 6= 0 because d(λG12) 6= xm ⊗ 1 where λ ∈ C and so [xm ⊗ 1] 6= 0. The equation

d(G12) = xm⊗1+xm−1⊗x+. . .+1⊗xm implies [xm⊗1+xm−1⊗x+. . .+1⊗xm] = 0.

So we obtain a relation am
1 + am−1

1 a2 + am−2
1 a2

2 + . . . + am
2 = 0 and

H∗(F (CPm; 2)) ∼=
C[a1, a2]

〈

am
1 + am−1

1 a2 + . . . + am
2 ; am+1

1 ; am+1
2

〉 ,

where deg a1 = a2 = 2. �

4. Three points configuration spaces

In our approach to compute H∗(F (CPm)) we use two different fibrations, their

associated spectral sequences, and comparing the possible results we shall use Kriz

model in a unique dimension in order to remove the indeterminacy.

P r o o f of Proposition 1. Using the Mayer-Vietoris sequence for X = CP
m\{z1},

Y = CP
m \ {z2} and X ∩ Y = CP

m \ {z1, z2}, we obtain the Betti numbers of
◦◦

CP
m.

Using the functoriality properties of the cup product we obtain the multiplicative

structure of the cohomology algebra of H∗(F (
◦◦

CP
m, 1)). It is given by:

H∗(F (
◦◦

CP
m, 1)) ∼=

C 〈x, z〉

〈xm, xz〉
,

where deg x = 2 and deg z = 2m − 1. �

P r o o f of Proposition 2. In order to compute the cohomology algebra of

F (
◦

CP
m, 2) the differential of the punctured Kriz model is given by:

d(G) = xm−1 ⊗ x + xm−2 ⊗ x2 + . . . + x ⊗ xm−1.

The non-zero Betti numbers are: β0 = 1, β2m = m − 2, β4m−3 = 1, and the

cohomology algebra of the punctured model is generated by y = [x⊗ 1], z = [1⊗ x],

w = [(xm−1 ⊗ 1)G] and has the presentation:

H∗(
◦

CP
m; 2) =

C 〈y, z, w〉

〈ym, zm, , ym−1z + . . . + yzm−1, yw, zw〉

where deg y = z = 2 and deg w = 4m − 3. �
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P r o o f of Theorem 3. For m = 1, 2 we obtain easily the results [1]:

PF (CP1;3)(t) = 1 + t3,

PF (CP2;3)(t) = (1 + t2)[(1 + t2)2 + t7].

For m > 3 the direct computations in the Kriz model are too complicated. So we

use the Leray-Serre spectral sequences for two fibrations; the first one is:

[2 − 3 − 1]3 : F (
◦

CP
3, 2)

i
−→ F (CP3; 3)

pr1

−→ F (CP3; 1).

Here π1(CP
3) = 1. By Proposition 2 the cohomology algebra of F (

◦

CP
3, 2) is gener-

ated by y = [x ⊗ 1], z = [1 ⊗ x], w = [(x2 ⊗ 1)G12] and presented by:

H∗(F (
◦

CP
3, 2)) =

C 〈y, z, w〉

〈y3, z3, y2z + yz2, yw, zw〉

and deg y = z = 2, deg w = 9.

Firstly we compute the Serre spectral sequence of this fibration. In the range

q 6 6 everything is concentrated in even degrees hence all the differentials are zero.

It is obvious that E2 = E3 = E4. For d4(w) we have two possibilities, d4(w) = 0 or

d4(w) 6= 0 :

C a s e 1: if d4(w) 6= 0 the spectral sequence collapses at E5, so the Poincaré

polynomial is given by:

P1(t) = 1 + 3t2 + 6t4 + 7t6 + 6t8 + 3t10 + t13 + t15.

C a s e 2: if d4(w) = 0 then we have two subcases d6(w) = 0 or d6(w) 6= 0.

C a s e 2.1: If d4(w) = 0 and d6(w) 6= 0 the spectral sequence collapses at E7 and

the Poincaré polynomial is given by:

P2(t) = 1 + 3t2 + 6t4 + 7t6 + 6t8 + 3t10 + t11 + t12 + t13 + t15.

C a s e 2.2: If d4(w) = 0 and d6(w) = 0 the spectral sequence collapses at E2 (see

Figs. 1 and 2) and the Poincaré polynomial is given by:

P3(t) = (1 + t2 + t4 + t6)(1 + 2t2 + 3t4 + t6 + t9)

= 1 + 3t2 + 6t4 + 7t6 + 6t8 + t9 + 4t10 + t11 + t12 + t13 + t15.

Next we will calculate the Poincaré polynomial of F (CP3; 3) by using the second

fibration:

[1 − 3 − 2]3 : F (
◦◦

CP
3; 1)

i
−→ F (CP3; 3)

pr12

−→ F (CP3; 2)
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1 x x2 x3

y
z

y2

yz

z2

y2z

w

xy, xz x2y, x2z x3y, x3z

xy2, xyz,

xz2

x2y2, x2yz,

x2z2

x3y2, x3yz,

x3z2

xy2z x2y2z x3y2z

xw x2w x3w

E2 = E3 = E4

Fig. 1

d4 d4

1 x x2 x3

y
z

y2

yz

z2

y2z

w

xy, xz x2y, x2z x3y, x3z

xy2, xyz,

xz2

x2y2, x2yz,

x2z2

x3y2, x3yz,

x3z2

xy2z x2y2z x3y2z

xw x2w x3w

E5 = E6 = . . . = E∞

Fig. 2

d6

where
◦◦

CP
3 = F (CP3 \{z1, z2}). The cohomology of the fiber space can be calculated

by using Proposition 1 and the cohomology algebra is given by: H∗(F (
◦◦

CP
3; 1) =

C 〈x, z〉 /
〈

x3, xz
〉

; where deg x = 2, z = 5. For the differential d2(z) there are two

possibilities: d2(z) = 0 or d2(z) 6= 0

C a s e 1.1: if d2(z) 6= 0 and d4(w1) = 0, the sequence collapses at E3 and the

Poincaré polynomial is given by:

Q1(t) = 1 + 3t2 + 6t4 + 7t6 + 6t8 + 3t10 + t11 + t12 + t13 + t15.

C a s e 1.2: if d2(z) 6= 0 and d4(w1) 6= 0 the sequence collapses at E5 and the

Poincaré polynomial is given by:

Q2(t) = 1 + 3t2 + 6t4 + 7t6 + 6t8 + 3t10 + t13 + t15.

C a s e 2.1: if d2(z) = 0 and d4(z) 6= 0, d6(y1) = 0 the sequence collapses at E5

and the Poincaré polynomial is given by:

Q3(t) = 1 + 3t2 + 6t4 + 7t6 + 6t8 + 4t10 + 2t11 + 2t13 + t14 + t15.
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C a s e 2.2: if d2(z) = 0 and d4(z) 6= 0 and d6(y1) 6= 0 the sequence collapses at

E7, so the Poincaré polynomial is given by:

Q4(t) = 1 + 3t2 + 6t4 + 7t6 + 6t8 + 3t10 + 2t11 + 2t12 + 2t13 + t14 + t15.

C a s e 2.3: if d2(z) = d4(z) = 0 but d6(z) 6= 0 the sequence collapses at E7, so the

Poincaré polynomial is given by:

Q5(t) = 1 + 3t2 + 6t4 + 7t6 + 6t8 + 2t9 + 5t10 + 3t11 + 3t12 + 2t13 + t14 + t15.

C a s e 2.4: when d2(z) = d4(z) = d6(z) = 0 the sequence collapses at E2, the

Poincaré polynomial is given by:

Q6(t) = (1 + t2 + t4 + t5)(1 + 2t2 + 3t4 + 3t6 + 2t8 + t10).

One can see that between two sets of Poincaré polynomials there are only two

matches, P1(t) = Q2(t) and P2(t) = Q1(t). Looking at the Kriz model in dimension

11 we have to decide whether β11 is 0 or 1. The differential

d : E11[1] −→ E12[0]

has a matrix representation: A =





I3 ∗ ∗ ∗

0 I3 ∗ ∗

0 0 B C



, where B =









0 −1 1

−1 0 1

−1 1 0

1 1 1









and C =









0 1 −1

1 0 −1

1 −1 0

0 0 0









. So the rank of A is 9 therefore H11(CP3; 3) 6= 0 and the

Poincaré polynomial of F (CP3; 3) is

P (t) = 1 + 3t2 + 6t4 + 7t6 + 6t8 + 3t10 + t11 + t12 + t13 + t15,

P (t) = (1 + t2 + t4)[(1 + t2 + t4)2 + t11].

�

Corollary 1. In the Leray- Serre spectral sequence of the first fibraton

[2 − 3 − 1]3 : F (
◦

CP
3; 2)

i
−→ F (CP3, 3)

pr1

−→ F (CP3; 1)

d4(w) = d5(w) = 0 but d6(w) 6= 0. Thus the spectral sequence start with E2 =

E3 = . . . = E6 and collapses at E7.
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Corollary 2. In the Leray- Serre spectral sequence of the second fibraton

[1 − 3 − 2]3 : F (
◦◦

CP
3; 1)

i
−→ F (CP3; 3)

pr12

−→ F (CP3; 2)

d2(z) 6= 0 and d4(w1) = 0. Thus the spectral sequence collapses at E3.

For m = 4, with the same method, we use the Leray-Serre spectral sequences of

the fibrations

[2 − 3 − 1]4 : F (
◦

CP
4; 2)

i
−→ F (CP4, 3)

pr1

−→ F (CP4; 1)

and

[1 − 3 − 2]4 : F (
◦◦

CP
4; 1)

i
−→ F (CP4; 3)

pr12

−→ F (CP4; 2).

Here π1(CP
4) = 1. By looking at all possible cases we have only three matches and

these have different β15. The Kriz model in dimension 15 has the differential

d : E15[1] −→ E16[0]

given by a matrix representation: A =















I3 ∗ ∗ ∗ ∗

0 I3 ∗ ∗ ∗

0 0 0 0 B

0 0 C I3 I3

0 0 I3 C 0















, where B =





0 1 −1

1 0 −1

1 −1 0



 and C =





0 1 1

1 0 1

1 1 0



. So the rank of A is 12, therefore H15(CP4;

3 6= 0 and the Poincaré polynomial of F (CP4; 3) is

P (t) = 1 + 3t2 + 6t4 + 10t6 + 12t8 + 12t10 + 10t12

+ 6t14 + t15 + 3t16 + t17 + t18 + t19 + t21.

P (t) = (1 + t2 + t4 + t6)[(1 + t2 + t4 + t6)2 + t15].

P r o o f of Theorem 4. We give complete details of the proof for the case m = 3.

Introduce a = [x], b1 = [y] and b2 = [z], generators of degree 2. Also take η = [xw],

as an exterior generator of degree 11. In the cohomology of the basis x4 = 0, hence

a4 = 0; and a3 6= 0 because no differential is pointing towards x3. It is also clear that

b3
i = 0, i = 1, 2 and b2

i 6= 0 because all the incident differentials are zero. From degree
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reason, we find η2 = 0, biη = 0 if i = 1, 3. Because [xkw] = [xk−1][xw] (k = 1, 2, 3),

we find akη 6= 0, if k = 1, 2, and a3η = 0.

H∗(F (CP3; 3)) ∼=
C 〈a, b1, b2, η〉

〈b1b2
2 + b2

1b2, a3, b3
1, b

3
2, a

3η, b1η, b2η〉

where deg a = 2, deg bi = 2, i ∈ {1, 2}, and deg η = 11.

Similarly we can prove the case m = 4. �

Our computations suggest the following conjectures:

Conjecture 1. The Poincaré polynomial of the configuration space F (CPm; 3) is

given by

PF (CPm;3)(t) = (1 + t2 + t4 + . . . + t2m−2)[(1 + t2 + t4 + . . . + t2m−2)2 + t4m−1].

Conjecture 2. The multiplicative structure of the cohomological algebra of the

configuration spaces F (CPm; 3) is given by

H∗(F (CPm; 3)) ∼=
C 〈a, b1, b2, η〉

〈

m−1
∑

i=1

bm−i
1 bi

2, a
m+1, bm

1 , bm
2 , amη, b1η, b2η

〉 ,

where deg a = 2, deg bi = 2, i ∈ {1, 2}, and deg η = 4m − 1.

Conjecture 3. In the Leray-Serre spectral sequence of the first fibration

[2 − 3 − 1]3 : F (
◦

CP
m; 2)

i
−→ F (CPm, 3)

pr1

−→ F (CPm; 1)

d4(w) = d6(w) = . . . = d2m−2(w) = 0 but d2m(w) 6= 0. Thus the spectral sequence

start with E2 = E3 = . . . = E2m and collapses at E2m+1.

Conjecture 4. In the Leray-Serre spectral sequence of the second fibration

[1 − 3 − 2]3 : F (
◦◦

CP
m; 1)

i
−→ F (CPm; 3)

pr12

−→ F (CPm; 2)

d2(z) 6= 0 and d4(w1) = d5(w1) = d6(w1) = . . . = d2m−2(w1) = 0. Thus the spectral

sequence collapses at E3.
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