[2] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara:
Theory of Charges. Academic Press London (1983).
MR 0751777
[3] Blass, A.:
Combinatorial cardinal characteristics of the continuum. (to appear) as a chapter in Handbook of Set Theory.
MR 2768685
[8] Farkas, B., Soukup, L.:
More on cardinal invariants of analytic $P$-ideals. Preprint.
MR 2537837
[11] Hernandez-Hernandez, F., Hrusák, M.: Cardinal invariants of $P$-ideals. Preprint.
[12] Kalenda, O.:
Valdivia compact spaces in topology and Banach space theory. Extr. Math. 15 (2000), 1-85.
MR 1792980 |
Zbl 0983.46021
[15] Koppelberg, S.:
Counterexamples in minimally generated Boolean algebras. Acta Univ. Carol. Math. Phys. 29 (1988), 27-36.
MR 0983448 |
Zbl 0676.06020
[20] Mercourakis, S.:
Some remarks on countably determined measure and uniform distribution of sequences. Monatsh. Math. 121 (1996), 79-111.
DOI 10.1007/BF01299640 |
MR 1375642
[22] Plebanek, G.:
On some properties of Banach spaces of continuous functions. Séminaire d'initiation a l'analyse 1991/92, Vol. 31 G. Choquet et al. Université Pierre et Marie Curie Paris (1994).
Zbl 0876.46016
[23] Plebanek, G.:
On Mazur property and realcompactness in $C(K)$. In: Topology, Measure and Fractals, Math. Res. Vol. 66 C. Bandt et al. Akademie Verlag (1992).
MR 1226275 |
Zbl 0850.46019
[26] Sinha, D. P., Arora, K. K.:
On the Gelfand-Phillips property in Banach spaces with PRI. Collect. Math. 48 (1997), 347-354.
MR 1475810 |
Zbl 0903.46015