Previous |  Up |  Next

Article

Keywords:
simple associative $F$-algebra; ideals; maps preserving ideals
Summary:
Let $\Cal P$ be an arbitrary parabolic subalgebra of a simple associative $F$-algebra. The ideals of $\Cal P$ are determined completely; Each ideal of $\Cal P$ is shown to be generated by one element; Every non-linear invertible map on $\Cal P$ that preserves ideals is described in an explicit formula.
References:
[1] Orsina, L., Papi, P: Enumeration of ad-nilpotent ideals of a Borel subalgebra in type A by class of nilpotence. C. R. Acad. Sci, Paris 330 (2000), 651-655. DOI 10.1016/S0764-4442(00)00253-6 | MR 1763905 | Zbl 0984.17003
[2] Panyushev, D.: Ad-nilpotent ideals of a Borel subalgebra: generators and duality. J. Algebra 274 (2004), 822-846. DOI 10.1016/j.jalgebra.2003.09.007 | MR 2043377 | Zbl 1067.17005
[3] Panyushev, D.: Long Abelian ideals. Advances in Mathematics 186 (2004), 307-316. DOI 10.1016/j.aim.2003.08.006 | MR 2073908 | Zbl 1052.17002
[4] Panyushev, D., Röhrle, G.: Spherical orbits and Abelian ideals. Advances in Mathematics 159 (2001), 229-246. DOI 10.1006/aima.2000.1959 | MR 1825058
[5] Cellini, P., Papi, P.: Abelian ideals of Borel subalgebras and affine Weyl groups. Advances in Mathematics 187 (2004), 320-361. DOI 10.1016/j.aim.2003.08.011 | MR 2078340 | Zbl 1112.17011
[6] Cellini, P., Papi, P.: Ad-nilpotent ideals of a Borel subalgebra. J. Algebra 225 (2000), 130-141. DOI 10.1006/jabr.1999.8099 | MR 1743654 | Zbl 0951.17003
[7] Cellini, P., Papi, P.: Ad-nilpotent ideals of a Borel subalgebra II. J. Algebra 258 (2002), 112-121. DOI 10.1016/S0021-8693(02)00532-X | MR 1958899 | Zbl 1033.17008
[8] Krattenthaler, C., Orsina, L., Papi, P.: Enumeration of ad-nilpotent $\frak{b}$-ideals for simple Lie algebras. Advances in Applied Mathematics 28 (2002), 478-522. DOI 10.1006/aama.2001.0792 | MR 1900005
[9] Righi, Céline: Ad-nilpotent ideals of a parabolic subalgebra. J. Algebra 319 (2008), 1555-1584. DOI 10.1016/j.jalgebra.2007.11.005 | MR 2383058
[10] Panyushev, D.: Normalizers of ad-nilpotent ideals. European Journal of Combinatorics 27 (2006), 153-178. DOI 10.1016/j.ejc.2004.10.002 | MR 2199771 | Zbl 1091.17007
[11] Radjavi, H., Šemrl, P.: Non-linear maps preserving solvability. J. Algebra 280 (2004), 624-634. DOI 10.1016/j.jalgebra.2004.06.016 | MR 2089255
Partner of
EuDML logo