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ON SEQUENTIAL PROPERTIES OF BANACH SPACES, SPACES OF

MEASURES AND DENSITIES
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Abstract. We show that a conjunction of Mazur and Gelfand-Phillips properties of a
Banach space E can be naturally expressed in terms of weak* continuity of seminorms on
the unit ball of E

∗.
We attempt to carry out a construction of a Banach space of the form C(K) which has

the Mazur property but does not have the Gelfand-Phillips property. For this purpose we
analyze the compact spaces on which all regular measures lie in the weak* sequential closure
of atomic measures, and the set-theoretic properties of generalized densities on the natural
numbers.
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1. Introduction

A Banach space E has the Mazur property if every x∗∗ ∈ E∗∗ which is weak* se-

quentially continuous on E∗ is in fact weak* continuous, and consequently is in E.

Here a weak* sequential continuity of a function ϕ : E∗ → R refers to the following

familiar condition:

lim
n→∞

ϕ(x∗n) = ϕ(x∗)

whenever x∗n is a sequence converging to x∗ in the weak* topology of the space E∗.

Obviously every reflexive space E has the Mazur property; it is also not difficult

to check that so does every separable E, since the ball in E∗ is metrizable in the

weak* topology. There are several examples of Banach spaces E which have the

The first author was partially supported by the Polish Ministry of Sciences and Higher
Education under grant no. N201 017 31/1314. The second author was partially supported
by KBN grant 1 P03A 02827 (2004–07).
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Mazur property, though the weak* topology of E∗ is far from being metrizable; see

Section 3 below. For such spaces it is the combination of linearity and sequential

continuity that makes a given x∗∗ weak* continuous. In particular, it is easy to give

an example of a separable E and a weak* sequentially continuous but not continuous

seminorm on E∗—see the remark after Lemma 2.2. Kazimierz Musia l posed the

following problem (communicated privately).

Problem 1.1. Let E be a Banach space with the Mazur property, and suppose

that ϕ : E∗ → R is a weak* sequentially continuous function which is a seminorm

on E∗. Is ϕ weak* continuous on the unit ball BE∗?

We show below (in Section 2) that the answer to the question above is affirmative

if and only if the space E has the Gelfand-Phillips property. Let us now recall the

latter notion.

A bounded subset A of a Banach space E is said to be limited if

lim
n→∞

sup
x∈A

|x∗n(x)| = 0

for every weak* null sequence x∗n ∈ E∗. It is easy to check that every relatively norm

compact set is limited. The space E is said to have the Gelfand-Phillips property if

this may be reversed, i.e. if every limited subset of E is relatively norm compact.

We refer the reader to Section 3 for the discussion of the Mazur and Gelfand-

Phillips properties of Banach spaces. Let us note here that in view of the solution

to Problem 1 it is natural to ask about possible connections between those two

properties. There are easy examples of Banach spaces with the Gelfand-Phillips

property but without the Mazur property. However, the list of known examples

might suggest that the Mazur property does imply the other one. In fact such a

statement was announced in [10] but the argument mentioned there is incorrect (see

the remark at the end of Section 3).

In the second part of the present paper we consider the following problem.

Problem 1.2. Is there a compact space K such that the underlying Banach

space C(K) has the Mazur property but does not have the Gelfand-Phillips property?

Our approach is based on some related results on the weak* topology in the spaces

of measures, presented in Section 4 and Section 5. In particular, Proposition 4.3 gives

a technical criterion which guarantees that a Banach space of the form C(K) has

the Mazur property, while Theorem 5.1 singles out a certain class of compact spaces

for which such a criterion is applicable.

Building on a result due to Schlumprecht [28], we give in the final section an affir-

mative solution to Problem 1.2. Our construction, however, relies on a set-theoretic
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assumption, whose consistency has not yet been established. This assumption is

related to (generalized) densities on natural numbers, and leads to new cardinal

invariants that are named in Section 6.*

In the sequel, by ω we mean the set of natural numbers, E always denotes a (real)

Banach space, and K stands for a Hausdorff compact space. By C(K) we denote

the Banach space of continuous functions, and identify C(K)∗ with the space M(K)

of all signed Radon measures on K of finite variation. Moreover, we write P (K) for

the set of all probability measures from M(K). For a given t ∈ K, δt ∈ P (K) is the

Dirac measure at t.

2. On seminorms on E∗

Let us fix a Banach space E and a seminorm ϕ : E∗ → R+. Note that ϕ is

weak* (sequentially) continuous if and only if it is weak* (sequentially) continuous

at 0 ∈ E∗. Indeed, if a net x∗t converges to x∗ then

−ϕ(x∗ − x∗t ) 6 ϕ(x∗t ) − ϕ(x∗) 6 ϕ(x∗t − x∗),

which, together with continuity at 0, implies that lim
t
ϕ(x∗t ) = ϕ(x∗) (and we may

replace a net by a sequence for the sequential version of the statement). Note also

that a sequentially continuous seminorm is norm continuous, since = ‖xn‖ → 0

implies weak* convergence.

Lemma 2.1. If E has the Mazur property and a seminorm ϕ is weak* sequentially

continuous then there is A ⊆ E such that ϕ(x∗) = sup
a∈A

x∗(a) for every x∗ ∈ E∗.

P r o o f. By the Hahn-Banach theorem, for every fixed x∗0 there is a linear

functional z on E∗ such that |z| 6 ϕ and z(x∗0) = ϕ(x∗0). If ‖x∗n‖ → 0 then |z(x∗n)| 6

ϕ(x∗n) → 0; hence z ∈ E∗∗ and z is weak* sequentially continuous. By the Mazur

property z is in E, and this immediately gives the required formula. �

Lemma 2.2. Let A be a bounded subset of a Banach space E and let us consider

a seminorm ϕ : E∗ → R+ given by the formula

ϕ(x∗) = sup
a∈A

|x∗(a)|.

Then

* The authors are grateful to Tomek Bartoszyński, Adam Krawczyk and Michael Hrusak
for discussions concerning that topic.
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(i) ϕ is weak* sequentially continuous if and only if A is limited;

(ii) ϕ is weak* continuous on BE∗ if and only if A is relatively norm compact.

P r o o f. If A is limited then by definition ϕ is weak* sequentially continuous at 0

and, by the remark above, it is weak* sequentially continuous. We shall check (ii).

If A is relatively norm compact then for a given ε > 0 there is a finite ε-net

a1, . . . , ak ∈ A. We have |x∗t (a)| 6 2ε whenever |x∗(ai)| 6 ε for i 6 k and ‖x∗‖ 6 1.

This means that ϕ is continuous on BE∗ .

Suppose that A is not relatively norm compact; then for some ε > 0 we can find

a sequence an and a sequence x∗n in BE∗ such that x∗n(an) > ε and x∗n(ai) = 0 for

every n ∈ ω and i < n. Consider ψ(x∗) = sup
n∈ω

|x∗(an)|; then ψ(x∗n) > ε for every n,

but if x∗ is a cluster point of {x∗n : n ∈ ω} then we have x∗(an) = 0 for all n, so

ψ(x∗) = 0. Since ψ is not weak* continuous on BE∗ , it is not continuous at 0, and

therefore ϕ > ψ is not weak* continuous either. �

We remark that in (ii) of Lemma 2.2 we do not have continuity on the whole

of E∗; in fact we can easily give an example of a separable Banach space E and of a

seminorm ϕ on E∗ which is sequentially weak* continuous but not weak* continuous.

Let en denote the unit vector (0, . . . , 1, . . .); we consider E = l1 and E∗ = l∞.

Then

A = {(1/k)ek : k ∈ ω} ⊆ l1

is relatively norm compact (hence limited), so if we consider ϕ : l∞ → R defined as

in Lemma 2.2 then ϕ is weak* sequentially continuous. To see that ϕ is not weak*

continuous note that 0 lies in the weak* closure of the set {nen : n ∈ ω} ⊆ l∞ while

ϕ(nen) = 1 for every n ∈ ω.

Theorem 2.3. For a Banach space E the following assertions are equivalent:

(a) every weak* sequentially seminorm ϕ on E∗ is weak* continuous on BE∗ ;

(b) E has the Mazur property and the Gelfand-Phillips property.

P r o o f. (a) → (b) If z ∈ E∗∗ is weak* sequentially continuous then ϕ(x∗) =

|z(x∗)| is a weak* sequentially continuous seminorm; hence (a) implies the Mazur

property.

For any bounded set A ⊆ E, we have a seminorm ϕ on E∗ as in Lemma 2.2. If A is

a limited subset of E then ϕ is weak* sequentially continuous, so weak* continuous

on BE∗ by (a), and it follows from Lemma2.2 that A is relatively norm compact.

(b) → (a) By the Mazur property and Lemma 2.1, if ϕ is a weak* sequentially

continuous seminorm then ϕ(x∗) = sup
a∈A

x∗(a) for some A ⊆ E. Now Lemma 2.2 (i)

tells us that A is limited so relatively norm compact by the Gelfand-Phillips property,

and Lemma 2.2 (ii) completes the proof. �
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3. Mazur versus Gelfand-Phillips

The Gelfand-Phillips property has attracted considerable attention over the last

twenty years, which resulted in several interesting papers, see for instance Bourgain

& Diestel [5], Drewnowski [6], Schlumprecht [28], Sinha & Arora [26], Freedman [9].

The class (GP) of spaces having this property is quite wide, and includes

(i) l1(κ) for every κ;

(ii) every E such that the ball in E∗ is weak* sequentially compact, or more gener-

ally

(iii) every E such that the ball in E∗ contains weak* sequentially precompact norm-

ing subset (see [6]);

(iv) C(K) for every K which is Valdivia compact (this class includes all Corson

compact and dyadic spaces, [26]).

Let us recall that a compact space K is Corson compact (Valdivia compact) if for

some κ there is an embedding g : K → Rκ such that g[K] ⊆ Σ(Rκ) (g[K] ∩ Σ(Rκ)

is dense in g[K], respectively). Here Σ(Rκ) is the subspace of Rκ of elements hav-

ing countable support. Corson and Valdivia compacta have numerous applications

in functional analysis; we refer the reader to a survey paper Kalenda [12] for the

background and further references on this topic.

The Mazur property is more isolated and rather difficult to handle. However, it

appeared quite naturally in the theory of Pettis integration of Banach space valued

functions, see Edgar [7] and Talagrand [27]; cf. Leung [18], Wilansky [29]. A recent

paper by Kalenda [13] allows one to analyze the property from another perspective.

It is clear that E has the Mazur property if E∗ has a weak* angelic ball; therefore

all weakly compactly generated Banach spaces are in (MP), see [7] for details. The

space l1(κ) is in (MP) unless there are weakly inaccessible cardinals 6 κ, see [7].

(A cardinal number κ is weakly inaccessible if κ is a regular limit cardinal; for our

purpose it is worth recalling that, consistently, such numbers do not exist.)

A Banach space C(K) has the Mazur property under one of the following assump-

tions on a compact space K (see Plebanek [22]–[25]):

(i) K is first-countable;

(ii) K is Corson compact;

(iii) K = {0, 1}κ, and there are no weakly inaccessible cardinals 6 κ (so for sure in

case κ = ω1 and, consistently, for all κ).

It is well known that the class (GP) is not included in (MP): Let K = [0, ω1],

i.e. K is the space of ordinals α 6 ω1 equipped with the interval topology. Then

K is scattered and C(K) has the Gelfand-Phillips property by a result due to

Drewnowski [6] mentioned above. The space C(K) does not have the Mazur prop-
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erty, since the formula ϕ(µ) = µ({ω1}) defines ϕ ∈ C(K)∗∗ \ C(K) which is weak*

sequentially continuous.

Recall that if A is a limited set in any Banach space E then A is conditionally

weakly compact (every sequence in A has a subsequence which is weakly Cauchy),

and is even relatively weakly compact provided E contains no copy of l1, see Bourgain

& Diestel [5]. We remark below that the Mazur property always implies such a weak

version of the Gelfand-Phillips property, considered by Leung [17].

Proposition 3.1. If E has the Mazur property and the set A ⊆ E is limited then

A is relatively weakly compact.

P r o o f. Otherwise, we can pick z∗∗ ∈ E∗∗ \ E which lies in the weak* closure

of A. If x∗n → 0 in the weak* topology then eventually |x∗n(a)| 6 ε for all a ∈ A, hence

|z∗∗(x∗n)| 6 ε. This means that z∗∗ is weak* sequentially continuous, a contradiction.

�

All the facts on the classes (MP) and (GP) we have mentioned so far might suggest

that simply the class (MP) is included in (GP). Such a result is claimed in [10] but

Theorem 2 announced there is not correct. That result in particular says that if E has

the Mazur property then the unit ball in E∗ is weak*-M -compact, i.e. according to

the author’s definition for every bounded sequence x∗n, its weak* closure contains

a weak* converging subsequence. This is not true: Consider E = C({0, 1}c); then

E has the Mazur property in most cases, for instance if c = ω1, ω2, . . .. On the other

hand, there is an embedding g : βω → {0, 1}c and if µn = δg(n) then there are no

weak* converging sequences in their closure simply because βω contains no nontrivial

converging sequence.

4. Towards a counterexample

We will now investigate if there is a Banach space of the form C(K) which is

in (MP) but not in (GP). We plan to obtain a desired compact space K as a com-

pactification of the natural numbers ω with the discrete topology. Such a compact-

ification K ⊇ ω will be seen as the Stone space ULT(A) of all ultrafilters on some

algebra A of subsets of ω.

Let A be any Boolean algebra; for any A ∈ A we write

Â = {F ∈ ULT(A) : A ∈ F};

recall that Â is then a clopen subset of ULT(A) and the family {Â : A ∈ A} is by

definition a base of the topology on ULT(A).
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If we want to violate the Gelfand-Phillips property in a space of the form C(K),

then we can use the following result due to Schlumprecht [28, Theorem 6]; here

subsequential completeness of a sequence (fn) in C(K) means that every subsequence

contains further subsequence which has a supremum in C(K).

Theorem 4.1. Let (fn) be a normalized sequence in C+(K) of functions having

pairwise disjoint supports. If (fn) is subsequentially complete then A = {fn : n ∈

ω} ⊆ C(K) is limited (and so C(K) does not have the Gelfand-Phillips property

since A is obviously not relatively norm compact).

In what follows we shall say that a family P of infinite subsets of ω is a π-base if

every infinite B ⊆ ω contains some P ∈ P .

Corollary 4.2. Suppose that A is an algebra of subsets of ω containing all finite

sets and some π-base. Then the Banach space C(K), where K = ULT(A), does not

have the Gelfand-Phillips property.

P r o o f. Given n ∈ ω, then {n} ∈ A and so Vn = {̂n} is a clopen subset of K.

Then the characteristic functions fn = χVn
form a sequence as in Theorem 4.1—the

subsequential completeness follows from the fact that A contains a π-base. �

We now turn to analyzing how to guarantee the Mazur property of the space C(K)

(we follow here Plebanek [23]). Every functional z∗∗ ∈ C(K)∗∗ gives rise to a function

ϕ : K → R, ϕ(t) = z∗∗(δt) for t ∈ K.

If z∗∗ is weak* sequentially continuous then ϕ is a sequentially continuous function

on K, since the convergence tn → t in K implies weak* convergence δtn
→ δt. If we

want to check that C(K) enjoys the Mazur property we need to know that ϕ is in

fact continuous. Moreover, one needs to check the formula

z∗∗(µ) =

∫
ϕdµ

for every probability Radon measure on K (then the formula extends easily to every

signed Radon measure ν via the decomposition ν = ν+ − ν− and we finally have

z∗∗ = ϕ ∈ C(K)).

In the proof presented in [23] or [25] that C({0, 1}κ) has the Mazur property

we could use a result due to Mazur himself [19] that every sequentially continuous

function on {0, 1}κ is continuous (provided there are no weakly inaccessible cardinals

up to κ; see also [21]). For the construction below we shall need a new idea at this

stage.
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First let us recall that in any topological space X , if B ⊆ X then the smallest

sequentially closed subset of X containing B can be written as

⋃

ξ<ω1

sclξ(B),

where scl0(B) = B, and for 0 < ξ < ω1, sclξ(B) is the set of limits of all converging

sequences from
⋃

η<ξ

sclη(B).

Given a compact space K, we consider the operation of sequential closure in the

space P (K) with its weak* topology. For any A ⊆ K we write

convA = conv{δa : a ∈ A},

for simplicity, i.e.convA is the set of all probability measures supported by a finite

subset of A. Moreover, we put

S(A) =
⋃

ξ<ω1

sclξ(convA),

i.e. S(A) is the smallest weak* sequentially closed set in P (K) containing all proba-

bility measures supported by finite subsets of A.

Proposition 4.3. Let K be a compactification of ω, and suppose that

(a) for every t ∈ K \ ω and every Y ⊆ ω, if t ∈ Y then δt ∈ S(Y );

(b) every µ ∈ P (K) belongs to S(K).

Then C(K) has the Mazur property.

P r o o f. Let z∗∗ ∈ C(K)∗∗ be weak* sequentially continuous and let ϕ : K → R

be defined as above. We will check that ϕ is continuous on ω ∪ {x} for every x ∈ K.

This implies that ϕ is continuous on K, since ω is dense (by a purely topological

lemma, see [27, Lemma 2.5.2]). The function ϕ is continuous at n for every n ∈ ω,

since n is isolated in K. Assume towards a contradiction that ϕ is not continuous

on ω ∪ {x} for some x ∈ K \ ω. Then there is Y ⊆ ω such that x ∈ Y and, say,

ϕ(y) > ϕ(x) + ε for every y ∈ Y . But then, using linearity and sequential continuity

of z∗∗ we get z∗∗(µ) > z∗∗(δx)+ε for every µ ∈ S(Y ), a contradiction with δx ∈ S(Y ).

We have z∗∗(µ) =
∫
ϕdµ for every µ ∈ convK, so by sequential continuity the

same formula holds for every µ ∈ S(K), and therefore (b) guaranties z∗∗ = ϕ. �
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5. When S(K) = P (K)

Given a measure µ ∈ P (K) and a sequence (tn) in K, (tn) is said to be µ-uniformly

distributed if
1

n

∑

i6n

δti
→ µ

in the weak* topology of M(K). Mercourakis [20] mentions several classes of com-

pact spaces K for which every µ ∈ P (K) admits a uniformly distributed sequence.

Note that for such spaces K we have in particular S(K) = P (K). We shall name

below another large class of spaces satisfying S(K) = P (K), obtained from Boolean

algebras via the Stone isomorphism.

Let us recall the notion of a minimally generated Boolean algebra introduced by

Koppelberg [14], [15]. We say that a Boolean algebra B is a minimal extension of A

if A ⊆ B and there is no algebra C such that A ( C ( B.

A Boolean algebra B is minimally generated if there is a continuous sequence of

algebras (Aα)α6κ, such that A0 = {0, 1}, Aα+1 is a minimal extension of Aα for

every α < κ and Aκ = B.

The notion of a minimally generated algebra is a useful tool for various set-

theoretic constructions, see e.g. Koszmider [16] and the references therein. It is

also interesting from the measure-theoretic angle; it was shown in [4] that if K is a

Stone space of a minimally generated algebra then the measures on K are small in

various senses; for instance if the said algebra is generated in ω1 steps then every

µ ∈ P (K) is uniformly regular, which is a property which guarantees the existence

of uniformly distributed sequences. We now present the following general result.

Theorem 5.1. If K is the Stone space of a minimally generated algebra A then

S(K) = P (K).

It will be convenient to recall several definitions and facts before we prove 5.1.

Let A be a Boolean algebra and let K be its Stone space. Every (finitely additive)

measure µ on A can be transferred to the measure µ̂ on the algebra of clopen subsets

of K via the formula µ̂(Â) = µ(A), and then extended to the unique Radon measure

on K. Therefore we may treat finitely additive measures on A rather than Radon

measures on K. In this way our space P (K) becomes simply the space P (A) of

all probability (finitely additive) measures on A, where P (A) is equipped with the

topology of convergence on all A ∈ A.

With every ultrafilter F on an algebra A we can associate a 0–1 measure δF ∈

P (A), where δF (A) = 1 if A ∈ F and is 0 otherwise. We shall write S(A) ⊆ P (A) for

the least sequentially closed set of measures containing convex combinations of 0–1
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measures on A. To prove Theorem 5.1 we need to show that P (A) = S(A) whenever

A is minimally generated.

A measure µ on A is non-atomic if for every ε > 0 there is a finite partition of 1

into elements of measure at most ε. Below we shall use the classical decomposition

theorem (see e.g. Theorem 5.2.7 in [2]).

Theorem 5.2 (Hammer & Sobczyk). Every µ ∈ P (A) can be uniquely decom-

posed into ν + ϕ, where ν is non-atomic and ϕ =
∑
i

aiδFi
, Fi ∈ ULT(A).

The following fact is proved in [4, Lemma 4.7]. Here we write µ∗ and µ∗ for the

corresponding outer and inner measures; note that the condition µ∗(B) = µ∗(B)

means that we can find A0, A1 ∈ A such that A0 ⊆ B ⊆ A1, µ(A1) − µ(A0) being

arbitrarily small.

Lemma 5.3. If B is an algebra that is minimally generated over algebra A and

µ ∈ P (A) is non-atomic then µ∗(B) = µ∗(B) for every B ∈ B. Consequently, every

non-atomic µ ∈ P (A) has the unique extension to µ̃ ∈ P (B).

The next lemma can be checked by induction on α.

Lemma 5.4. Let µ, ν, ϕ ∈ P (A). Suppose that µ = aν + bϕ for some a, b > 0

with a+ b = 1. Then for every α < ω1 we have µ ∈ sclα(A) whenever ν, ϕ ∈ sclα(A).

Lemma 5.5. Let B be minimally generated over A. Suppose that µ ∈ P (A) is

non-atomic and (µn)n is a sequence of measures from P (A) converging to µ. Then

µ has the unique extension to µ̃ on B and if µ̃n is any extension of µn to B for

every n, then µ̃n converge to µ̃.

P r o o f. Consider a non-atomic measure µ ∈ P (A) and its extension µ̃ ∈ P (B)

(which is unique by Lemma 5.3).

Take a sequence of measures (µn)n from P (A) converging to µ, and let µ̃n ∈ P (B)

be any extension of µn for every n (we do not assume that µn is non-atomic and

thus µ̃n need not be uniquely determined). We are to show that the sequence µ̃n(B)

converges to µ̃(B) for every B ∈ B. Indeed, fix ε > 0; by Lemma 5.3 there are

A0, A1 ∈ A such that A0 ⊆ B ⊆ A1 and µ(A1) − µ(A0) <
1
2ε. Let n0 be such

that µn(A0) > µ(A0) − 1
4ε and µn(A1) < µ(A1) + 1

4ε for every n > n0. Then

µn(A1) − µn(A0) < ε and µn(A0) < µ̃n(B) < µn(A1) and µn(A0) < µ̃(B) < µn(A1)

for every n > n0. It follows that |µ̃n(B) − µ̃(B)| < ε for every n > n0. �
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Lemma 5.6. If B is minimally generated over A and µ ∈ S(A), then µ has an

extension to µ̃ ∈ S(B).

P r o o f. Let B be minimally generated over A. We show that for every α, if

µ ∈ sclα(A), then it has an extension to µ̃ ∈ sclα(B).

Assume that µ ∈ scl0(A), i.e. µ = a0δF0
+. . .+akδFk

for some ai ∈ R, Fi ∈ ULT(A)

for i 6 k. Clearly, µ̃ = a0δF ′

0
+ . . . + akδF ′

k
, where F ′

i is any extension of Fi to an

ultrafilter on B for every i 6 k, extends µ and µ̃ ∈ scl0(B).

Suppose now that every µ ∈ sclβ(A) has an extension to µ̃ ∈ sclβ(B) for every

β < α and consider µ ∈ sclα(B). Use Theorem 5.2 to decompose µ into non-atomic

and purely atomic parts; suppose for instance that µ = 1
2 (ν + ϕ), where ν is non-

atomic and ϕ is purely atomic (the general case will follow by an obvious modification

of coefficients).

Let ν̃ ∈ P (B) be the unique extension of ν and let ϕ̂ ∈ P (B) be any extension

of ϕ to the strictly atomic measure. Let µ̃ = 1
2 (ν̃ + ϕ̂). By Lemma 5.4 it is enough

to show that ν̃ ∈ sclα(B) as ϕ̂ ∈ scl1(B).

Since ν ∈ sclα(A), there is a sequence (νn)n from
⋃

β<α

sclβ(A) converging to ν. By

the inductive assumption, for every n there is an extension ν̃n ∈
⋃

β<α

sclβ(B) of νn.

By Lemma 5.5, ν̃n converges to ν̃. Thus, ν̃ ∈ sclα(B) and we are done. �

P r o o f of Theorem 5.1. Fix a sequence of minimal extensions Aα, α 6 κ gener-

ating A. Assume towards a contradiction that P (A)\S(A) 6= ∅ while P (Aα) = S(Aα)

for every α < κ.

It follows from Theorem 5.2 and Lemma 5.4 that we can pick a non-atomic measure

µ ∈ P (A) \ S(A). Then for each α < κ the restriction µα of µ to Aα cannot be non-

atomic (if µα were non-atomic then we would have µ ∈ S(A) by Lemma 5.6 and

Lemma 5.3).

We have shown that κ is the first α 6 κ at which µ is non-atomic on Aα. But this

plainly implies that κ has countable cofinality. Therefore we can write A as
⋃

n∈ω

Bn,

where Bn+1 is minimally generated over Bn for every n and, putting νn = µ
∣∣Bn, we

have νn ∈ S(Bn) for every n. Every νn extends to some ν′n ∈ S(A) by Lemma 5.3.

Finally, we get µ = lim
n→∞

ν′n ∈ S(A), a contradiction. �
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6. Condensing filters on ω

In this section we investigate for which algebras A of subsets of ω the Stone space

K = ULT(A) satisfies S(K) = P (K) (i.e. condition (i) of Proposition 4.3). As

we shall see this problem is naturally connected with the properties of densities

on ω. Some of the concepts and remarks presented here, in particular the one

concerning densities of the form dϕ have been suggested by Tomek Bartoszyński,

Adam Krawczyk and Michael Hrusak.

We shall denote by [ω]ω the family of all infinite subsets of ω; [ω] will stand for

the whole power set of ω (note that the symbol P is already in use). For A,B ⊆ ω

we write A ⊆∗ B if A is almost included in B, i.e. if the set A \ B is finite. Recall

that the asymptotic density of a set A ⊆ ω, denoted usually by d(A), is defined as

d(A) = lim
n→∞

|A ∩ n|

n
,

provided the limit exists.

We start by the following simple example which illustrates the main idea.

Example 6.1. There is an algebra A ⊆ [ω] containing all finite sets and such

that in the space K = ULT(A) (which contains ω as a dense discrete subset) there

is F ∈ K such that δF ∈ S(ω) while F is not in the sequential closure of ω.

P r o o f. Let F be the filter of all sets A ⊆ ω of density 1; let A be the algebra

generated by F , that is A = {A ⊆ ω : d(A) = 1 or d(A) = 0}. Consider now

F ∈ K = ULT(A).

Every infinite B ⊆ ω contains an infinite subset A of density zero, and this easily

implies that ω contains no converging sequences; in particular, ω is a sequentially

closed subset of K. On the other hand, δF ∈ S(ω), simply because

δF = lim
n→∞

1

n

n∑

i=1

δi.

�

Recall that if F ⊆ [ω]ω is any family closed under finite intersections then a set

A ∈ [ω]ω is called a pseudo-intersection of F if A ⊆∗ F for every F ∈ F . From the

topological point of view, if F ∈ ULT(A) has a pseudo-intersection A then elements

of A form a sequence converging to F in the Stone space of A. The cardinal number p

is defined so that whenever we have a family F ⊆ [ω]ω of fewer than p, and F is

closed under finite unions, then F has a pseudo-intersection. We can imitate those

classical concepts as follows.
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For an infinite set B ⊆ ω fix a strictly increasing enumeration b1 < b2 < b3 < . . .

of its elements. Then for any A define the relative density of A in B by

dB(A) = d({n : bn ∈ A}),

provided the limit exists.

Definition 6.2. We say that B ∈ [ω]ω is a condenser of a family A ⊆ [ω]ω if

dB(A) = 1 for every A ∈ A.

It is clear that if B is a pseudo-intersection of F then B is a condenser of F ;

letting F be the filter {A ⊆ ω : d(A) = 1} we have an example of a filter having ω

as a condenser, but having no pseudo-intersection. We note that a condenser of a

filter need not be its element.

Example 6.3. There is a filter F whose all condensers lie outside F .

P r o o f. Let Gn = (2n−1, 2n]∩ω for every n > 0. Let F be a filter generated by

the family { ⋃

n∈D

Gn : d(D) = 1

}
.

If B is any selector of the family {Gn : n > 0} then dB(F ) = 1 for every F ∈

F . However, it is easy to check that for every F ∈ F there is F1 ∈ F such that

dF (F1) = 1
2 . �

The relevance of condensers comes from the observation that if F ∈ ULT(A) has a

condenser B then δF ∈ S(B). In fact, we may consider here a slightly more general

notion of density. For a function ϕ : ω → R+ define

dϕ(A) = lim
n→∞

∑
i∈A∩n ϕ(i)∑

i∈n ϕ(i)
,

provided the limit exists. We say that a density dϕ condenses a filer F if dϕ(A) = 1

for every A ∈ F . We have the following obvious lemma.

Lemma 6.4. Let A be an algebra of subsets of ω containing all finite sets. Suppose

that F ∈ ULT(A) is such a filter that for some ϕ the density dϕ condenses F . Then

δF ∈ S(ω).

Let us write k (k∗) for the minimal cardinal number κ for which there is a family

A = {Aξ : ξ < κ} ⊆ [ω]ω such that Aξ ⊆∗ Aη whenever η < ξ < κ, and A has no
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condenser, that is there is no ϕ : ω → R+ with dϕ(Aξ) = 1 for every ξ < κ). We

have the following obvious inequalities

ω1 6 p 6 k 6 k∗ 6 c,

but it is not known if any of the relations p < k, k < k∗ is consistent with the usual

axioms of the set theory. One can check that k∗ 6 b and that k∗ < b is relatively

consistent, basing on some results on the cardinal number b, see Blass [3]. Ideals of

the form {A ⊆ ω : dϕ(A) = 0}, where ϕ : ω → R+, are sometimes called the Erdős-

Ulam ideals; cardinal invariants of such ideals on ω are considered by Hrusak [11]

and Farkas & Soukup [8].

The following problem may be stated independently of the Banach space properties

we are discussing.

Problem 6.5. Is it consistent that there is a Boolean algebra A of subsets of

natural numbers such that

(i) no ultrafilter on A has a pseudo-intersection;

(ii) every ultrafilter on A has a condenser (or at least is condensed by some density)?

Equivalently, we ask here if there is a compactification K of ω such that for every

t ∈ K \ω, t is not a limit of a sequence from ω while δt is the the limit of a sequence

of purely atomic measures supported by ω.

7. A possible example

Recall that A ⊆ [ω]ω is a m.a.d. family if it is maximal pairwise almost disjoint.

The cardinal number h mentioned below is the distributivity number, i.e. the small-

est cardinality of a collection T of m.a.d. families whose union is splitting, i.e. for

every infinite A ⊆ ω there is T ∈
⋃
T such that both A ∩ T and A \ T are infinite.

It is known that p 6 h 6 b, see [3].

Theorem 7.1 (Balcar, Pelant, Simon [1]). There is a family of infinite sets S ⊆

[ω]ω such that

• S is a ⊆∗-tree of height h,

• each level of S, except of the root (which is ω), is a m.a.d. family,

• every infinite A ⊆ ω contains an element from S.

A ⊆∗-tree satisfying the above properties is often called a base matrix tree. We

can assume that each of its nodes has c immediate successors.
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Theorem 7.2. Let S be a base matrix tree of Theorem 7.1, and let A be an

algebra of subsets of ω generated by S together with all finite sets. Further, let K be

the Stone space of all ultrafilters on A.

(i) The Banach space C(K) does not have the Gelfand-Phillips property.

(ii) The space K satisfies S(K) = P (K).

(iii) If h < k∗ then for every t ∈ K \ ω and every Y ⊆ ω, if t ∈ Y then δt ∈ S(Y ).

(iv) Consequently, assuming h < k∗ the space C(K) has the Mazur property.

P r o o f. Part (i) follows from Corollary 4.2 since S contains a π-base. Part (ii)

follows from Theorem 5.1 since the algebra A, as a tree algebra, is minimally gener-

ated, see e.g. [4] (actually, S(K) = P (K) can be also derived from a result due to

Sapounakis that every measure on K has a uniformly distributed sequence, see [20]).

Let us write S as the union of the tree levels Lξ, ξ < h, so that every Lξ is an

almost disjoint family, and every A ∈ Lξ has c immediate almost disjoint successors.

We now check (iii). Let t ∈ K \ ω be such that t ∈ Y for some Y ⊆ ω. We write

t = F when thinking of t as of an ultrafilter on A.

Suppose that F ∩ Lξ 6= ∅ for every ξ < h; then F is generated by a family Aξ,

ξ < h, where Aξ ∈ F ∩ Lξ, forming a branch. Then the sets Aξ ∩ Y are infinite

and form a ⊆∗-decreasing family, so by our assumption h < k∗ there is a function

ϕ : Y → R+ such that the corresponding density dϕ satisfies dϕ(Aξ) = 1 for every

ξ < h. This implies that δt is the limit of measures from convY , see Lemma 6.4.

Suppose now that A ∈ F ∩ Lξ while no B ∈ Lξ+1 is in F . Since t = F lies in

the closure of Y we can choose a sequence of almost disjoint Bn ∈ Lξ+1 such that

Bn ⊆∗ A and Bn∩Y is infinite for every n. For every n we can pick an ultrafilter Fn

on A containing Bn ∩Y and such that Fn is generated by some branch of the tree S.

Writing tn = Fn we have δtn
∈ S(Y ) by the above argument. But we have tn → t

in the space K, so δt is also in S(Y ) as the limit of δtn
.

The remaining case is that the first γ for which F ∩ Lγ = ∅ is the limit ordinal

but then we can argue in a similar manner: for ξ < γ pick Aξ ∈ F ∩ Lξ; there must

be a sequence of distinct Bn ∈ Lγ such that each Bn ⊆∗ Aξ for ξ < γ and Bn ∩ Y is

infinite. Again we get t = F as the limit of branches.

Finally, (iv) follows from (iii) and Lemma 4.3. �

Unfortunately, it is not known if the assumption h < k∗ appearing in part (iii) of

Theorem 7.2 is consistent with ZFC.

At least, we can show that it is consistent with ZFC that there exists a Boolean

algebra with properties similar to those of the above theorem and of Problem 6.5.

We have to relax the property that all ultrafilters have to possess condensers. Instead

of this, we will demand that all ultrafilters have to be feeble.

395



Definition 7.3. A filter F ⊆ P (ω) is feeble provided there is a finite-to-one

function f : ω → ω such that f [F ] is co-finite for every F ∈ F .

Note that the assumption h < b is consistent with ZFC. Namely, in standard

Hechler’s model h = ℵ1 whereas b = c (see [3]).

Theorem 7.4. Assume h < b. Then there is a Boolean algebra A ⊆ P (ω) such

that

(i) no ultrafilter on A has a pseudo-intersection;

(ii) every ultrafilter on A is feeble.

The following fact reveals the connection between feebleness and condensers and

shows that the above object is somehow similar to that of Problem 6.5.

Fact 7.5. If a filter F has a condenser, then it is feeble.

P r o o f. Assume P is a condenser of F and fix a co-infinite N ⊆ ω of density 1.

Fix increasing enumerations p1 < p2 < . . . of elements of P and n1 < n2 < . . . of

elements of N . Let f : ω → ω be such that f |ω\P is any bijection onto ω \ N and

f(pk) = nk. Clearly, f is a bijection and f [F ] has density 1 for every F ∈ F .

Notice that the function g(n) = [log2(n)] proves the feebleness of the density filter.

Indeed, it is finite-to-one and if A is co-infinite, then d∗(g
−1[A]) < 1

2 .

Therefore, g ◦ f witnesses that F is feeble. �

The proof of Theorem 7.4 resembles that of Theorem 7.2, but we need several

definitions and lemmas. We find it convenient to say that for a filter F ⊆ P (ω)

with a pseudo-intersection, a family A ⊆ P (ω) is a m.a.d. family below F if it is

a maximal infinite family such that A is pairwise almost disjoint and consists of

pseudo-intersections of F .

Lemma 7.6. Let A be a m.a.d. family below a filter F and let f : ω → ω be a

bijection. Then there is a refinement B of A (i.e. for every B ∈ B there is A ∈ A

such that B ⊆∗ A) such that B is a m.a.d. family below F and f [B] has density 0

for every B ∈ B.

P r o o f. Let B be a maximal family such that

• B is pairwise almost disjoint,

• B is a refinement of A,

• if B ∈ B, then f [B] has density 0.

The family B is a m.a.d. family below F . Indeed, assume that there is an infinite

N /∈ B such that N ∩B is finite for every B ∈ B. Clearly, N ∩A is infinite for some

A ∈ A. Hence, every infinite M ⊆ A ∩N such that f [M ] is of density 0 contradicts

the maximality assumption. �
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Lemma 7.7. There is a base matrix tree S such that if T is a linearly ordered

by ⊆∗ subfamily of S (a tower), then there is a bijection fT : ω → ω such that

(a) fT [S] has density 1 for every S ∈ T ;

(b) fT [S] has density 0 if S (∗ T for every T ∈ T .

P r o o f. Let S′ be a base matrix tree with all branches cofinal. Denote by

(L′
ξ)ξ<h the levels of S′. We define the levels (Lξ)ξ<h of S inductively modifying the

levels of S′. Let L0 = L′
0 and ξ < h.

Assume that we have defined Lα for every α < ξ. Consider a tower T = (Tα)α<ξ,

where Tα ∈ Lα. Since T has a pseudo-intersection, there is a bijection fT : ω → ω

such that fT [Tα] has density 1 for every α < ξ.

Consider the maximal almost disjoint family A which refines L′
ξ and is below T .

Use Lemma 7.6 to find a refinement BT of A such that fT [B] has density 0 for every

BT ∈ B.

Repeat this procedure for every tower T of height ξ and enumerate Lξ =
⋃
T

BT .

�

The following theorem due to Solomon is proved in [3, Theorem 9.10].

Theorem 7.8. Every filter generated by less than b sets is feeble.

Before proving the main theorem notice that if a Boolean algebra is generated by

a base matrix tree, then it does not have an ultrafilter with a pseudo-intersection.

Otherwise, we could easily find an infinite subset of the pseudo-intersection which

does not contain any element of the tree.

P r o o f of Theorem 7.4. Let A be the Boolean algebra generated by S from

Lemma 7.7. We can repeat the proof of Theorem 7.2 to show that A satisfies the

demanded conditions.

Let F be an ultrafilter on A. Following the terminology of the proof of Theorem 7.2

we have to deal with two cases. If there is no α < h such that F ∩Lα = ∅, then F is

generated by h many sets. So, by Theorem 7.8 it is feeble, since h < b.

Otherwise, there is α < h such that F ∩ Lα = ∅. Consider the family

T = {T ∈ S ∩ F : T ∈ Lβ , β < α}.

Since it is a tower, we can find a bijection fT as in Lemma 7.7. Then fT [F ] is of

density 1 for every F ∈ F . If g : ω → ω is a function witnessing the feebleness of

the density filter (e.g. that from the proof of Fact 7.5), then g ◦ fT proves that F is

feeble. �
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Unfortunately, the Boolean algebra from Theorem 7.4 cannot be used directly to

produce a Banach space with the Mazur property and without the Gelfand-Phillips

property.
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