[1] Argyros, I. K.:
Polynomial operator equations in abstract spaces and applications. St. Lucie/CRC/Lewis Publ. Mathematics series, 1998, Boca Raton, Florida, U.S.A.
MR 1731346 |
Zbl 0967.65070
[5] Argyros, I. K.:
Convergence and Applications of Newton-Type Iterations. Springer-Verlag Publ., New-York (2008).
MR 2428779 |
Zbl 1153.65057
[6] Argyros, I. K., Hilout, S.:
Efficient Methods for Solving Equations and Variational Inequalities. Polimetrica Publisher (2009).
MR 2424657
[8] Chandrasekhar, S.:
Radiative Transfer. Dover Publ., New-York (1960).
MR 0111583
[9] Dennis, J. E.:
Toward a unified convergence theory for Newton-like methods. In Nonlinear Functional Analysis and Applications (L.B. Rall, ed.), Academic Press, New York (1971), 425-472.
MR 0278556 |
Zbl 0276.65029
[10] Hernández, M. A., Rubio, M. J., Ezquerro, J. A.:
Solving a special case of conservative problems by Secant-like method. Appl. Math. Cmput. 169 (2005), 926-942.
DOI 10.1016/j.amc.2004.09.070 |
MR 2174693
[11] Hernández, M. A., Rubio, M. J., Ezquerro, J. A.:
Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J. Comput. Appl. Math. 115 (2000), 245-254.
DOI 10.1016/S0377-0427(99)00116-8 |
MR 1747223
[14] Laasonen, P.:
Ein überquadratisch konvergenter iterativer Algorithmus. Ann. Acad. Sci. Fenn. Ser I 450 (1969), 1-10.
MR 0255047 |
Zbl 0193.11704
[15] Ortega, J. M., Rheinboldt, W. C.:
Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970).
MR 0273810 |
Zbl 0241.65046
[16] Potra, F. A.:
Sharp error bounds for a class of Newton-like methods. Libertas Mathematica 5 (1985), 71-84.
MR 0816258 |
Zbl 0581.47050