[3] Birkhoff, G.:
Lattice Theory (third revised edition). Am. Math. Soc. Colloquium Pub. 25 Providence (1967).
MR 0227053
[5] Çoker, D.:
An introduction to intuitionistic fuzzy topological space. Fuzzy Sets Syst. 88 (1997), 81-89.
MR 1449497
[6] Çoker, D., Demirci, M.:
On intuitionistic fuzzy points. Notes IFS 1-2 (1995), 79-84.
MR 1417217
[7] Çoker, D., Demirci, M.: An introduction to intuitionistic fuzzy topological space in Šostak's sense. BUSEFAL 67 (1996), 61-66.
[8] Çoker, D., Demirci, M.:
On fuzzy inclusion in the intuitionistic sense. J. Fuzzy Math. 4 (1996), 701-714.
MR 1410641
[10] Höhle, U., Rodabaugh, S. E., eds.:
Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The Handbooks of Fuzzy Sets Series, Vol. 3. Kluwer Academic Publishers Dordrecht (1999).
MR 1788899
[11] Fang, Jin-ming:
$I$-FTOP is isomorphic to $I$-{\bf FQN} and $I$-{\bf AITOP}. Fuzzy Sets Syst. 147 (2004), 317-325.
MR 2089295
[12] Fang, Jinming, Yue, Yueli:
Base and subbase in $I$-fuzzy topological spaces. J. Math. Res. Expo. 26 (2006), 89-95.
MR 2208585 |
Zbl 1101.54005
[13] Lee, S. J., Lee, E. P.:
On the category of intuitionistic fuzzy topological spaces. Bull. Korean Math. Soc. 37 (2000), 63-76.
MR 1752195
[17] Ramadan, A. A., Abbas, S. E., El-Latif, A. A. Abd:
Compactness in intuitionistic fuzzy topological spaces. Int. J. Math. Math. Sci. 1 (2005), 19-32.
MR 2146013
[18] Rodabaugh, S. E.:
Powerset operator foundations for Poslat fuzzy set theories and topologies. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The handbooks of Fuzzy Sets Series, Vol. 3 Kluwer Academic Publishers Dordrecht (1999), 91-116.
MR 1788901 |
Zbl 0974.03047
[19] Šostak, A.:
On a fuzzy topological structure. Rend. Circ. Math. Palermo (Suppl. Ser. II) 11 (1985), 89-103.
MR 0897975
[21] Ying, Ming-sheng:
A new approach for fuzzy topology (I). Fuzzy Sets Syst. 9 (1991), 303-321.
MR 1095905
[22] Yue, Yue-li, Fang, Jin-ming:
On induced $I$-fuzzy topological spaces. J. Math. Res. Exp. 25 (2005), 665-670 Chinese.
MR 2184241