Previous |  Up |  Next

Article

Keywords:
finitely additive integration; localized convergence; integral representation; weak continuity conditions; horizontal integration
Summary:
We prove that the spectral sets of any positive abstract Riemann integrable function are measurable but (at most) a countable amount of them. In addition, the integral of such a function can be computed as an improper classical Riemann integral of the measures of its spectral sets under some weak continuity conditions which in fact characterize the integral representation.
References:
[1] Amo, E. de, Campo, R. del, Carrillo, M. Díaz: Absolute continuity theorems for abstract Riemann integration. Czech. Math. J. 57 (2007), 793-807. DOI 10.1007/s10587-007-0076-2 | MR 2356281
[2] Amo, E. de, Carrillo, M. Díaz: Local and improper Daniell-Loomis integrals. Rend. Circ. Mat. Palermo 54 (2005), 329-342. DOI 10.1007/BF02874940 | MR 2210936
[3] Anger, B., Portenier, C.: Radon Integrals. Progress in Math. Vol. 103, Birkhäuser, Boston (1992). MR 1138722 | Zbl 0766.28003
[4] Aumann, G.: Integralerweiterungen mittels Normen. Arch. Math. 3 (1952), 441-450. DOI 10.1007/BF01900560 | MR 0054693 | Zbl 0048.03703
[5] Guerrero, P. Bobillo, Carrillo, M. Díaz: Fonctions fortement-mesurables et mesurables par rapport a un systeme de Loomis. Bull. Soc. Roy. Sci. Ličge 55 (1987), 467-471. MR 0859793
[6] Burrill, C. W.: Measure, Integration and Probability. McGraw-Hill (1972). MR 0457657 | Zbl 0248.28001
[7] Choquet, G.: Theory of capacities. Ann. Inst. Fourier, Grenoble 5 (1953/54), 131-295. DOI 10.5802/aif.53 | MR 0080760
[8] Daniell, P. J.: A general form of integral. Ann. of Math. 19 (1917/18), 279-294 JFM 46.0395.01. DOI 10.2307/1967495
[9] Denneberg, D.: Non-Additive Measure and Integral. Kluwer (1994). MR 1320048 | Zbl 0826.28002
[10] Carrillo, M. Díaz, Günzler, H.: Abstract Daniell-Loomis spaces. Bull. Austral. Math. Soc. 53 (1996), 135-142. DOI 10.1017/S0004972700016804 | MR 1371921
[11] Carrillo, M. Díaz, Günzler, H.: Daniell-Loomis integrals. Rocky Mount. J. Math. 27 (1997), 1075-1087. MR 1627666
[12] Carrillo, M. Díaz, Günzler, H.: Local integral metrics and Daniell-Loomis integrals. Bull. Austral. Math. Soc. 48 (1993), 411-426. DOI 10.1017/S0004972700015872 | MR 1248045
[13] Carrillo, M. Díaz, Rivas, P. Muñoz: Finitely additive integration: integral extension with local-convergence. Ann. Sci. Math. Québec 17 (1993), 145-154. MR 1259371
[14] Carrillo, M. Díaz, Rivas, P. Muñoz: Positive linear functionals and improper integration. Ann. Sci. Math. Québec 18 (1994), 149-156. MR 1311751
[15] Dunford, N., Schwartz, J. T.: Linear Operartors, part I, General Theory. Interscience, New-York (1957). MR 1009162
[16] Frink, O.: Jordan measure and Riemann integration. Ann. of Math. 34 (1933), 518-526. DOI 10.2307/1968175 | MR 1503121 | Zbl 0007.15501
[17] Greco, G.: Sulla reppresentazione di funzionali mediante integrali. Rend. Sem. Mat. Padova 66 (1982), 21-42. MR 0664569
[18] Günzler, H.: Integration. Bibliogr. Institut, Mannheim (1985). MR 0802205
[19] Günzler, H.: Linear Functionals which are Integrals. Rend. Sem. Mat. Fis. Milano 43 (1973), 167-176. DOI 10.1007/BF02924845 | MR 0354987
[20] Kindler, J.: A Mazur-Orlicz theorem for submodular set functions. Journ. Math. Analysis Appl. 120 (1986), 533-564. DOI 10.1016/0022-247X(86)90175-7 | MR 0864770
[21] König, H.: Measure and Integration. An advanced course in basic procedures and applications. Springer (1997). MR 1633615
[22] Loomis, L. H.: Linear functionals and content. Amer. J. Math. 76 (1954), 168-182. DOI 10.2307/2372407 | MR 0060145 | Zbl 0055.10101
[23] Luxemburg, W. A. J.: Integration with respect to finitely additive measures. Stud. Econ., Theory 2 (1991), 109-150. DOI 10.1007/978-3-642-58199-1_6 | MR 1307422 | Zbl 0771.28004
[24] Maharam, D.: Jordan fields and improper integrals. J. Math. Anal. and Appl. 133 (1988), 163-194. DOI 10.1016/0022-247X(88)90373-3 | MR 0949326 | Zbl 0667.28001
[25] Pfeffer, W. F.: Integrals and Measures. Dekker, New-York (1977). MR 0460580 | Zbl 0362.28004
[26] Ridder, J.: Over de Integraldefinities van Riemann en Lebesgue. Christiann Huygens 4 (1925/26), 246-250 JFM 51.0200.05 and correction, ibid. {\it 5} (1927), 205 JFM 53.0208.03.
[27] Schäfke, F. W.: Integrationstheorie I. J. Reine Angew. Math. 244 (1970), 154-176. MR 0271300
[28] Schäfke, F. W.: Lokale Integralnormen and verallgemeinerte uneigentlich Riemann-Stiltjes-Integrals. J. Reine Angew. Math. 289 (1977), 118-134. MR 0453968
[29] Topsøe, F.: On constructions of measures. Proceedings of the Conference on Topology and Measure I, Zinnowitz, 1974, Part 2, 343-381, Ernst-Moritz-Arndt Univ., Greifswald, 1978.
Partner of
EuDML logo