[3] Christensen, J. P. R.:
Topology and Borel Structure. Descriptive Topology and Set Theory with Applications to Functional Analysis and Measure Theory, Vol. 10. North Holland Amsterdam (1974).
MR 0348724
[4] Comfort, W. W., Remus, D.:
Compact groups of Ulam-measurable cardinality: Partial converse theorems of Arkhangel'skii and Varopoulos. Math. Jap. 39 (1994), 203-210.
MR 1270627
[7] Drewnowski, L.: The dimension and codimension of analytic subspaces in topological vector spaces, with applications to the constructions of some pathological topological vector spaces. Liège 1982 (unpublished Math. talk).
[8] Drewnowski, L., Labuda, I.: Sequence $F$-spaces of $L_0$-type over submeasures of $\Bbb N$. (to appear).
[10] Kelley, J. L., al., I. Namioka et:
Linear Topological Spaces. Van Nostrand London (1963).
MR 0166578 |
Zbl 0115.09902
[11] Kōmura, Y.:
On linear topological spaces. Kumamoto J. Sci., Ser. A 5 (1962), 148-157.
MR 0151817
[12] Nakamura, M.:
On quasi-Suslin space and closed graph theorem. Proc. Japan Acad. 46 (1970), 514-517.
MR 0282325
[14] Carreras, P. Perez, Bonet, J.:
Barrelled Locally Convex Spaces, Vol. 131. North Holland Amsterdam (1987).
MR 0880207
[15] Rogers, C. A., Jayne, J. E., Dellacherie, C., Topsøe, F., Hoffman-Jørgensen, J., Martin, D. A., Kechris, A. S., Stone, A. H.: Analytic Sets. Academic Press London (1980).