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Abstract. We prove that the spectral sets of any positive abstract Riemann integrable
function are measurable but (at most) a countable amount of them. In addition, the
integral of such a function can be computed as an improper classical Riemann integral
of the measures of its spectral sets under some weak continuity conditions which in fact
characterize the integral representation.
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1. Introduction

Given a Loomis system (X, B, I) without any continuity conditions for the basic

integral I, Díaz Carrillo and Muñoz Rivas introduced in [13] a general extension

process using a suitable localized convergence, thus obtaining the class R1(B, I) of

abstract Riemann integrable functions. This extension process subsumes µ-Riemann

[18], Riemann-Loomis [22], and Dunford-Schwartz [15] integrations.

The classical problem of the relation between the integrability of a function f

and the measurability of its spectral sets, f−1(]r, +∞[), for r ∈ R, has been widely

studied by several authors in those measure-theoretic contexts (see [23] and [24], for

instance).

We now carry on this discussion in our functional setting and prove that every

abstract integrable function is quasi-measurable, that is, all its spectral sets are

measurable but at most a countable amount of them.

Moreover, under some weak continuity conditions, we are able to obtain a formula

that allows to reconstruct the integral of an integrable function through the measures

of its spectral sets.
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Our results generalize the previous corresponding ones from the measure-theoretic

point of view to the functional context in which the integral need not even be induced

by any finitely additive measure.

Section 2 is devoted to introducing notation and preliminary results to make the

paper self-contained. In Section 3, the additional conditions we need are defined and

their interactions with the localized convergence are presented. The measurability of

the spectral sets of an integrable function is discussed in Section 4. The last section

shows that, under stonian and lower and upper continuity conditions, it is possible

to obtain the integral of f ∈ R1(B, I) by adding the measures of its spectral sets. In

fact, these conditions characterize integral representation in this new situation (see

[9], [17], [19] and [21]).

2. Preliminaries

For R := R∪{−∞, +∞}, where R is the real line, we extend the usual addition in

R to R by the conventions r + s := 0 if r = −s ∈ {−∞, +∞} and r − s := r + (−s).

We also set a∨ b := max{a, b}, a∧ b := min{a, b}, a+ := a∨ 0 and a− := −(a∧ 0).

Given an arbitrary nonempty set X , let R
X
consist of all functions defined on X

with values in R. All operations and relations in R
X
are defined pointwise, with the

conventions inf ∅ := +∞ and sup ∅ := −∞.

A functional T : R
X

→ R will be called subadditive if T (f + g) 6 T (f) + T (g) for

all f, g ∈ R
X
unless T (f) = −T (g) = +∞ and T (f) = −T (g) = −∞. The notion of

a superadditive functional is introduced in the completely dual way.

A triple (X, B, I) is called a Loomis system if X is a nonempty set, B ⊆ RX is

a vector lattice of real functions and I : B → R is a positive (i.e., I(h) > 0 for all

h ∈ B with h > 0) linear functional. We set +B := {h ∈ B : h > 0}.

Given (X, Ω, µ) with µ a finitely additive measure and Ω a ring, we call (X, BΩ, Iµ)

the induced Loomis system, where BΩ is the vector lattice of µ-simple functions,

BΩ :=
{

h ∈ R
X : h =

n
∑

i=1

aiχAi
, ai ∈ R, Ai ∈ Ω, µ([h 6= 0]) < +∞

}

,

and Iµ is its canonical elementary integral given by

Iµ(h) :=

n
∑

i=1

aiµ(Ai), ∀h ∈ BΩ.

2.1. Proper Riemann integration. Following Loomis in [22] we extend the

elementary functional I on B to the functionals I+ and I− (oscillation integrals)
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over the class R
X
of extended real valued functions,

I−(f) := inf{I(h) : h ∈ B, h > f} (upper functional of I),

I+(f) := sup{I(h) : h ∈ B, h 6 f} (lower functional of I),

which evidently verify I−(f) = −I+(−f), are positively homogeneous and monotone,

I− is subadditive and I+ is superadditive. We also consider the class of the properly

Riemann integrable functions

Rprop(B, I) = {f ∈ R
X : I+(f) = I−(f) ∈ R},

which is a vector lattice where the functional I := I+ = I− is linear and positive,

i.e., it is an integral which extends the initial I.

For every f ∈ RX , the following statements are equivalent:

(i) f ∈ Rprop(B, I).

(ii) ∀ε > 0 ∃h, g ∈ B such that h 6 f 6 g and I(g − h) < ε.

(iii) ∀ε > 0 ∃h ∈ B such that I−(|f − h|) < ε.

Hence, Rprop(B, I) is the closure of the vector lattice B with respect to the integral

seminorm I−(| · |) (see [4] and [27]).

Note that the particular case of a Loomis system induced by the semiring {[a, b[ :

−∞ < a 6 b < +∞} and the finitely additive measure µ([a, b[) = b− a, leads to the

classical Riemann integrable functions (as in [4] and [18, p. 216]).

2.2. Abstract Riemann integration. Since for proper Riemann integration

there are no satisfactory Lebesgue convergence type theorems to make a consis-

tent integration theory, Díaz Carrillo and Muñoz Rivas introduced in [13] the class

R1(B, I) of the abstract Riemann integrable functions as

R1(B, I) := {f ∈ R
X

: ∃{hn} in B, I-Cauchy; {hn}−→f(I−)}

where {hn} I-Cauchy means that I(|hn − hm|) → 0, for n, m → +∞, and

{hn}−→f(I−) means that {I−(|fn − f | ∧ h)} → 0, ∀h ∈ +B. This notion of

local I-convergence allowed them to obtain convergence theorems for R1(B, I) (see

theorems 2.3, 2.4 and 2.7 in [13]).

Moreover, for each f ∈ R1(B, I) we set I(f) := lim
n→+∞

I(hn) for any I-Cauchy

sequence {hn} in B such that {hn}−→f(I−).

The definition does not depend on the particular sequence {hn} and no confusion

arises with this notation since Rprop(B, I) ⊆ R1(B, I) with coinciding integrals I.
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There are several useful characterizations for the class R1(B, I). On the one hand,

we have

R1(B, I) = {f ∈ R
X

: I+(|f |) < +∞, f± ∧ h ∈ Rprop, ∀h ∈ +B},

which, in particular, says that

+R1(B, I) = {f ∈ R
X

: I+(f) < +∞, f ∧ h ∈ Rprop, ∀h ∈ +B};

furthermore, I(f) = I+(f) for all f ∈ +R1(B, I).

On the other hand, given f ∈ R
X
, the localized functional I−l in the sense of

Schäfke (see [28]) is defined as

I−l (f) := sup{I−(f ∧ h) : h ∈ +B}.

It is easily verified that I−l is positively homogeneous, monotone and subadditive.

Moreover, (I−l )l = I−l , I
+ 6 I−l 6 I− and I−l (f) = I−(f) if f 6 h for some h ∈ +B.

Theorem 2 in [14] guarantees that R1(B, I) is the closure of B in R
X
with respect

to the integral seminorm I−l (| · |), and I−l (f) = I(f), for all f ∈ R1(B, I) (I is the

only I−l -continuous extension of I from B to R1(B, I)).

It is also possible to provide another description of the class R1(B, I) by means of

the upper and lower essential functionals due to Anger and Portenier (see [3]),

I•(f) := inf
v∈+B

sup
u∈+B

I−((f ∧ u) ∨ v), ∀f ∈ R
X

,

I•(f) := −I•(−f), ∀f ∈ R
X

.

Evidently I• coincides with I−l on the positive functions and therefore, theo-

rems 4.4 in [3] and 5 in [11] guarantee that R1(B, I) can be represented in the

following way:

R1(B, I) = {f ∈ R
X

: I•(f) = I•(f) ∈ R}.

Finally, we define the oscillation integrals for R1(B, I) : ∀f ∈ R
X
,

I∗(f) := inf{I(g) : g ∈ R1(B, I), g > f},(1)

I∗(f) := sup{I(g) : g ∈ R1(B, I), g 6 f},(2)

which verify that I∗(f) = −I∗(−f), both I∗ and I∗ are positively homogeneous and

increasing, I∗ is subadditive and I∗ is superadditive, and both extend I on R1(B, I).
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In fact, in [2, Cor. 3.9] it is proved that the extension process for the initial Loomis

system (X, R1(B, I), I) through oscillation integrals I∗ and I∗ is closed; i.e.

R1(B, I) = {f ∈ R
X

: I∗(f) = I∗(f) ∈ R}.

Since B ⊆ R1(B, I) we have that I+ 6 I∗ 6 I∗ 6 I−. Moreover, if f > 0 and

there exists h ∈ B such that f 6 h, then I−(f) = I∗(f).

3. Additional conditions

It is worth pointing out that abstract Riemann integration coincides with classical

Daniell integration [8] when monotone continuity is assumed, but in order to obtain

the previous integral extension process, we have not used any additional condition

on the initial vector lattice B, nor on the linear functional I defined on it, and hence

it allows to subsume most of finitely additive integration theories.

Nevertheless, weak continuity conditions (on the Loomis system) need to be in-

troduced if we want to obtain the representation result we desire.

Definition 3.1. The vector lattice B is stonian if f ∧ 1 ∈ B, ∀f ∈ B (equiva-

lently, f ∧ r ∈ B, ∀f ∈ B, ∀r ∈ R).

Definition 3.2. A Loomis system (X, B, I) is called C∞ or upper continuous if

lim
r→+∞

I∗(f − f ∧ r) = 0, ∀f ∈ +B,

and it is called C0 or lower continuous if

lim
r→0

I∗(f ∧ r) = 0, ∀f ∈ +B.

The stonian condition on B is hereditary for the class R1(B, I), as is said in

Lemma 3.3. If B is stonian, then R1(B, I) is stonian too.

P r o o f. For f ∈ R1(B, I), there exists an I-Cauchy sequence {hn} in B, and

{hn} → f(I−). Thus {hn ∧ 1} → f ∧ 1(I−), and {hn ∧ 1} is I-Cauchy, because

the inequality |hn ∧ 1 − hm ∧ 1| 6 |hn − hm| is valid for all n, m ∈ N. Therefore,

f ∧ 1 ∈ R1(B, I); i.e., R1(B, I) is stonian. �

We now study conditions under which C0 and C∞ are hereditary from B to

R1(B, I). We call attention to the fact that, while for C0 the stonian condition is

necessary for the initial vector lattice B, for C∞ it is possible to obtain the heritage

directly for the class R1(B, I).
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Lemma 3.4. For an arbitrary Loomis system (X, B, I) we have:

(i) If B is C0 and stonian, then R1(B, I) is C0.

(ii) If B is C∞, then R1(B, I) is C∞.

P r o o f. (i) Let f ∈ +R1(B, I) and fn := f ∧ 1/n, ∀n ∈ N. Since B is stonian

so is R1(B, I). Therefore, fn ∈ R1(B, I), ∀n ∈ N. Clearly, {fn} converges uniformly

to 0 on X and, since B is C0, it is easy to check that {fn} → 0(I−). Moreover,

|fn| 6 f ∈ R1(B, I) for all n ∈ N and hence the Dominated Convergence Theorem

(see [13, theorem 2.7]), guarantees that I(fn) = I(f ∧ 1/n) → I(0) = 0.

Thus, given ε > 0, there exists m ∈ N such that I(fm) < ε, and hence, given

0 < r < 1/m, we have I(f ∧ r) 6 I(fM ) 6 ε which proves that R1(B, I) is C0.

(ii) Let us consider f ∈ +R1(B, I) and ε > 0. Since I+(f) 6 I(f) < +∞, there

exists h ∈ +B with h 6 f such that I(f) − 1
4ε < I(h) and so I(f − h) < 1

4ε.

Moreover, since B is C∞, there exists s > 0 such that I∗(h − h ∧ r) < 1
2ε, for all

r > s. Then, given r > s, we have

I∗(f − f ∧ r) = I∗(|f − f ∧ r|) 6 I(f − h) + I∗(h − h ∧ r) + I∗(|h ∧ r − f ∧ r|)

and using the Birkhoff inequalities we deduce that

I∗(f − f ∧ r) 6 I(f − h) + I∗(h − h ∧ r) + I(f − h) <
ε

4
+

ε

2
+

ε

4
= ε.

�

Condition C∞ on R1(B, I) means that it is possible to approximate the elements

in R1(B, I) through their I−-local upper truncations with constants, i.e, if R1(B, I)

is C∞, then {f ∧ rn} → f(I−) for all {rn} → +∞, with {rn} ⊂ R+ and for all

f ∈ R1(B, I). In fact, under the additional condition that R1(B, I) is stonian, the

converse is true by the Dominated Convergence Theorem, [13, Th. 2.7]. Analogously,

C0 condition on R1(B, I) says that {f ∧ rn} → 0(I−) for all {rn} → 0, with {rn} ⊆

R+ and for all f ∈ R1(B, I).

Some examples of Loomis systems which are C∞ but are not C0 and viceversa can

be found in [19].
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4. Measurability for abstract Riemann integration

First of all, we must make precise the meaning of measurability in this functional

context: Given an arbitrary Loomis system (X, B, I) we consider the finite measure

space (X, Ω, µ) induced by R1(B, I), that is,

Ω := {A ⊆ X : χA ∈ R1(B, I)} and µ(A) := I(χA), ∀A ∈ Ω.

Therefore, the measurable sets will be those sets whose characteristic function is

abstract Riemann integrable, and their measure will be the integral of this function.

In addition, the spectral sets of a function are defined in the following way:

Definition 4.1. Given f ∈ R
X

, the spectral sets of f are the sets [f > r] :=

{x ∈ X : f(x) > r} and [f > r] := {x ∈ X : f(x) > r}, with r ∈ R.

With these definitions, the classical notion of measurability can be formulated

in this functional context as those functions whose all spectral sets are measurable.

Unfortunately, this kind of measurability does not have a good behavior with respect

to Riemann-type integration since there are integrable functions (even classical Rie-

mann integrable functions) such that they are not measurable in this sense (see [16]).

Nonetheless, employing this slightly modified version of the classical notion of

measurability we obtain some results in this direction:

Definition 4.2. Given a ring R in X and f ∈ R
X
, we say that f is quasi-R-

measurable if there is a countable set N in R such that [f > r], [f > r] ∈ R for all

r ∈ R \ N .

With this new terminology (inspired by Maharam [24]), Ridder proved in [26] that

integrability and quasi-measurability are equivalent properties for the particular case

of proper Riemann integration with respect to a finite finitely additive measure. In

her paper, Maharam introduced an improper integration theory with respect to a

finitely additive measure and extended this result to this new situation (see [24,

Th. 5.1]). Finally, Luxemburg proved in [23, Th. 4.10] that integrable functions are

quasi-measurable for Dunford-Schwartz integration.

Using the previously mentioned description of abstract Riemann integration as the

essential integration of Anger and Portenier and some techniques employed before in

[5], we have now proved that, under the stonian condition, every integrable function

is quasi-measurable, that is:
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Theorem 4.3. If B is stonian, then every abstract Riemann integrable function

is quasi-Ω-measurable.

P r o o f. Let f ∈ R1(B, I) and let r0 < r1 < r2 < . . . < rn be real numbers. For

each k ∈ {1, . . . , n}, set fk := (f ∧ rk − f ∧ rk−1)/(rk − rk−1), Ak := [f > rk] and

Bk := [f > rk]. Since R1(B, I) is stonian we have fk ∈ R1(B, I), ∀k ∈ {1, . . . , n}.

Moreover, χAk
6 fk 6 χAk−1

and χBk
6 fk 6 χBk−1

, ∀k ∈ {1, . . . , n}. Therefore we

can restrict ourselves to proving the measurability of the Ak’s except for a countable

amount of them (the reasoning is analogous for the Bk’s).

From χAk
6 fk 6 χAk−1

we deduce that

I•(χAk
), I•(χAk

) ∈ R, ∀k ∈ {1, . . . , n},

I•(χAk
) − I•(χAk

) 6 I(fk) − I(fk+1), ∀k ∈ {1, . . . , n − 1},

I•(χAn
) − I•(χAn

) 6 I(fn).

Consequently,

n
∑

k=1

[I•(χAk
) − I•(χAk

)] 6

n−1
∑

k=1

[I•(χAk
) − I•(χAk

)] + [I•(χAn
) − I•(χAn

)]

6

n−1
∑

k=1

[I(fk) − I(fk+1)] + I(fn) = I(f1) − I(fn) + I(fn) = I(f1).

Thus, we have obtained the inequality

(3)

n
∑

k=1

[I•(χAk
) − I•(χAk

)] 6 I(f1)

Let N be the set of all real numbers r such that χAr
6∈ R1(B, I), where Ar :=

[f > r]. It is clear that N can be written as

N =
⋃

a∈Q, ε∈Q+

{r > a : I•(χAr
) − I•(χAr

) > ε}.

Assume that for some a ∈ Q and some ε ∈ Q+ there exists an infinite number of

r ∈ R with r > a and I•(χAr
)− I•(χAr

) > ε. Then for each n ∈ N we can select real

numbers r2 < . . . < rn among them and therefore, applying inequality (3) (with

r0 = a − 1 and r1 = a), we conclude that

I(f1) >

n
∑

k=2

[I•(χAk
h) − I•(χAk

)] >

n
∑

k=2

ε = (n − 1)ε, ∀n ∈ N.
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Letting n → +∞, we obtain that I(f1) = +∞, but this contradicts the fact that

f1 ∈ R1(B, I).

We have proved that for each a ∈ Q and for each ε ∈ Q+ there exists a finite

number of real numbers r such that r > a and I•(χAr
) − I•(χAr

) > ε. Therefore N

is countable and χAr
∈ R1(B, I) for all r ∈ R \ N . �

Theorem 4.3 says that if B is stonian and f ∈ R1(B, I), then the set T (f) :=

{t ∈ R : [f > t] ∈ Ω} is co-countable and hence dense. The converse of this theorem

is still an open question, but at least with the aid of the Dominated Convergence

Theorem for the class R1(B, I) ([13, th. 2.7]) we have proved that, in this case, both

the properties are equivalent for T (f), the same as it occurs for Maharam integration

theory with respect to a finitely additive measure (see [24, cor. 5.2]).

Proposition 4.4. Let f ∈ R1(B, I) and T (f) = {t ∈ R : [f > t] ∈ Ω}. The

following statements are equivalent:

(i) T (f) is co-countable.

(ii) T (f) is dense in R.

P r o o f. (i) ⇒ (ii) is evident. Therefore assume that T (f) is dense and let us

see that, in fact, it is co-countable.

Consider the function F : R −→ R given by F (t) := I∗(χ[f>t]) for all t ∈ R, which

is, clearly, decreasing.

Let C(F ) be the set of all continuity points of F . It is well known that, because

of the monotony of F , C(F ) is co-countable (see, for example, [6]), so it is enough

to show that C(F ) ⊆ T (f), and then T (f) will be a co-countable set.

Let t0 ∈ C(F ). Since T (f) is dense in R we are able to choose an increasing

sequence {tn} → t0, with tn ∈ T (f), for all n ∈ N and hence {F (tn)} → F (t0), i.e.,

{I∗(χ[f>tn])} → I∗(χ[f>t0]).

Setting gn := χ[f>tn] for all n ∈ N ∪ {0}, we have that the sequence {gn} is

decreasing, I∗(gn) → I∗(g0) and gn ∈ R1(B, I) for all n ∈ N. Moreover, |gn| 6 g1 ∈

R1(B, I), that is, {gn} is dominated by an element belonging to R1(B, I).

Thus, for any h ∈ +B, we have that I−(|gn − g0| ∧ h) = I∗(|gn − g0| ∧ h) 6

I∗(|gn − g0|) = I∗(gn − g0) 6 I∗(gn) − I∗(g0) = I(gn) − I∗(g0) → 0, which says that

{gn} → g0(I
−) and hence, applying the Dominated Convergence Theorem for the

class R1(B, I), we deduce that g0 ∈ R1(B, I), that is, t0 ∈ T (f). �

Let us now see some first nice consequences from Theorem 4.3. To this end we

define µ∗ and µ∗ to be, respectively, the outer and the inner measures of µ, i.e.,

µ∗(A) = inf{µ(C) : A ⊆ C, C ∈ Ω}

µ∗(A) = sup{µ(D) : D ⊆ A, D ∈ Ω}
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which, as is well known, are monotone and extend µ. Moreover, µ∗ is subadditive.

Using the above theorem, we can deduce some conditions under which the outer

and the inner measures µ∗ and µ∗ coincide with the functionals I∗ and I∗ on char-

acteristic functions, respectively.

Corollary 4.5. If B is stonian then µ∗(A) = I∗(χA), ∀A ⊆ X .

P r o o f. On one hand, I∗(χA) = inf{I(g) : g ∈ R1(B, I), g > χA} 6 inf{I(χC) :

χC ∈ R1(B, I), χC > χA} = inf{µ(C) : C ∈ Ω, C ⊇ A} = µ∗(A).

On the other hand, if I∗(χA) = +∞, the other inequality is trivial. Thus, without

loss of generality, we can assume that I∗(χA) < +∞. Therefore, there exists g ∈

R1(B, I), g > χA, and for any such g, Lemma 3.3 and Theorem 4.3 guarantee the

existence of a strictly increasing sequence {rn} in R+ which converges to 1 such that

[g > rn] ∈ Ω, for all n ∈ N. Since g > χA and rn 6 1, it follows that A ⊆ [g > rn],

and consequently

µ∗(A) 6 µ([g > rn]) = I(χ[g>rn]) 6 I(
g

rn

) =
1

rn

I(g), ∀n ∈ N.

Thus, µ∗(A) 6 I(g) for all g ∈ R1(B, I) with g > χA, which shows that µ∗(A) 6

I∗(χA). �

Corollary 4.6. If B is stonian and C0 then µ∗(A) = I∗(χA), ∀A ⊆ X .

P r o o f. On the one hand, µ∗(A) = sup{µ(D) : D ∈ Ω, D ⊆ A} = sup{I(χD) :

χD ∈ R1(B, I), χD 6 χA} 6 sup{I(g) : g ∈ R1(B, I), g 6 χA} = I∗(χA).

On the other hand, if I∗(χA) = −∞ the result immediately follows. Thus, we

assume that I∗(χA) > −∞. Therefore, for arbitrary g ∈ B with g 6 χA, Lemma 3.3

and Theorem 4.3 allow us to consider a strictly decreasing sequence {rn} ⊆]0, 1[

convergent to 0 such that [g > rn] ∈ Ω for all n ∈ N.

Since g 6 χA and rn > 0, it follows that [g > rn] ⊆ A, and hence for every n ∈ N

we have

I(g) 6 I∗(g ∧ rn) + I∗(g − g ∧ rn) = I∗(g ∧ rn) + I∗((g − rn)χ[g>rn])

6 I∗(g ∧ rn) + I∗((1 − rn)χ[g>rn]) = I∗(g ∧ rn) + (1 − rn)I(χ[g>rn])

= I∗(g ∧ rn) + (1 − rn)µ([g > rn]) 6 I∗(g ∧ rn) + (1 − rn)µ∗(A).

Letting n → +∞ and using Lemma 3.4 we deduce that I(g) 6 µ∗(A) for all

g ∈ R1(B, I) with g 6 χA, i.e., µ∗(A) > I∗(χA). �

In addition, we are able to characterize the C0 and C∞ conditions by means of

spectral sets:
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Proposition 4.7. Given an arbitrary Loomis system (X, B, I) we have

(i) B is C∞ ⇔ lim
r→+∞

I∗(hχ[h>r]) = 0, ∀h ∈ +B;

(ii) B is C0 ⇔ lim
r→0

I∗(hχ[h6r]) = 0, ∀h ∈ +B.

P r o o f. (i) (⇒) Assume that B is C∞. Given r > 0 and n ∈ N, we have

hχ[h>r] 6
h

n
+

(

h − h ∧
r

n

)

.

Let ε > 0. Since I(h) ∈ R+, there exists m ∈ N such that I(h)/m < 1
2ε, and from

lim
r→+∞

I∗(h− h∧ r/m) = 0 we find a δ such that I∗(h− h∧ r/m) < 1
2ε for all r < δ.

Thus, given r < δ we have

I∗(hχ[h>r]) 6 I∗
( h

m
+ h − h ∧

r

m

)

6
I(h)

m
+ I∗

(

h − h ∧
r

m

)

<
ε

2
+

ε

2
= ε,

which says that lim
r→+∞

I∗(hχ[h>r]) = 0.

(⇐) Assume that lim
r→+∞

I∗(hχ[h>r]) = 0. Since 0 6 h− h∧ r 6 hχ[h>r], it follows

that lim
r→+∞

I∗(h − h ∧ r) = 0, that is, B is C∞.

(ii) (⇒) Assume now that B is C0. From 0 6 hχ[h6r] 6 h ∧ r we deduce that

0 6 I∗(hχ[h6r]) 6 I∗(h ∧ r), which implies that lim
r→0

I∗(hχ[h6r]) = 0.

(⇐) Finally, assume that lim
r→0

I∗(hχ[h6r]) = 0. For any n ∈ N and r ∈ R+

we have 0 6 h ∧ r 6 h/n + hχ[h6nr]. Thus, given ε > 0 there exists m ∈ N

such that I(h)/m < 1
2ε, and then, by hypothesis, there exists δ > 0 such that

I∗(hχ[h6mr]) < 1
2ε for all r < δ.

Therefore, given r < δ we have 0 6 I∗(h ∧ r) 6 I∗(h/m + hχ[h6mr]) 6 I(h)/m +

I∗(hχ[h6mr]) < 1
2ε + 1

2ε = ε, which proves that B is C0. �

The proof remains valid if we consider R1(B, I) instead of B. Thus, using Lem-

mas 3.3 and 3.4, we can modify Proposition 4.7 in the following manner:

Corollary 4.8. Given an arbitrary Loomis system (X, B, I), we have

B is C∞ ⇔ lim
r→+∞

I∗(fχ[f>r]) = 0, ∀f ∈ +R1(B, I).

Moreover, if B is stonian, then

B is C0 ⇔ lim
r→0

I∗(fχ[f6r]) = 0, ∀f ∈ +R1(B, I).

Corollary 4.8 allows to generalize theorem 4.11 in [23] to our functional context

as an immediate consequence:
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Corollary 4.9. If B is C∞, then

lim
r→+∞

rI∗(χ[f>r]) = 0, ∀f ∈ +R1(B, I).

P r o o f. By Corollary 4.8, lim
r→+∞

I∗(fχ[f>r]) = 0. Therefore, the inequality

0 6 rI∗(χ[f>r]) = I∗(rχ[f>r]) 6 I∗(fχ[f>r])

leads to lim
r→+∞

rI∗(χ[f>r]) = 0. �

Another interesting problem related to upper continuity is the one of determining

when the indefinite integrals of an integrable function are absolutely continuous in

this functional context. It is well known that they are always absolutely continuous

for Dunford-Schwartz integration with respect to a finitely additive measure (see

theorem 4.9 in [23]).

We have recently extended this result to abstract Riemann integration in the

following way (see [1] for the details): If (X, B, I) is a C∞ Loomis system, f ∈

+R1(B, I) and µf is the finite additive measure induced by µf (A) := I(fχA), ∀A ∈

Ω, then

∀ ε > 0, ∃ δ > 0: A ∈ Ω, µ(A) < δ ⇒ µf (A) < ε.

5. Representation of the integral

A long time after Ridder had proved the equivalence between integrability and

quasi-measurability for proper Riemann integration with respect to a finite finitely

additive measure, Topsøe checked in [29] that the formula

(4.)

∫

f dµ =

∫ +∞

0

µ([f > r]) dr,

which allows to compute the integral of a function by summing the measures of its

spectral sets, holds for any positive integrable function f .

Later, Maharam extended this formula to her improper integration theory with

respect to a finitely additive measure (see [24]) and Luxemburg did the same (in [23])

for Dunford-Schwartz integration.

The aim of this section is to carry formula (4) from the measure-theoretic context

to our functional setting in such a way that the results of Maharam and Luxemburg

will be, at least, partially generalized. Thus, the main result we are looking for is the

expression of the integral I on the class R1(B, I) as an improper Riemann integral

in the classical sense (Corollary 5.2).
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We must point out that the idea of integration behind the right-hand member of

formula (4) can be found in literature under the name of horizontal integration and

its background goes back to the work by Choquet [7], which can be also considered

the starting point of the so-called non-additive integration theory. For a systematic

study of this type of theory we refer to the book by König [21] which collects and

develops the main results in this direction due to Choquet, Topsøe, Kindler (see also

[20]) and Dennemberg (see also [9]), among others.

We begin by proving an integral representation for the positive elements in B.

From now on, given a function f we assume F to be the function F : R+ −→ R

defined by F (r) := I∗(χ[f>r]). Note that F is a decreasing function.

Proposition 5.1. If B is stonian, C0 and C∞, then

I(f) =

∫ +∞

0

I∗(χ[f>r]) dr =

∫ +∞

0

I∗(χ[f>r]) dr, ∀f ∈ +B.

P r o o f. We only give the proof for I∗ (the same reasoning applies to I∗). Let

f ∈ B and 0 < r < t. It is clear that

χ[f>t] 6
f ∧ t − f ∧ r

t − r
6 χ[f>r].

Since f ∧t, f ∧r ∈ B we have I((f ∧t−f ∧r)/(t−r)) = (I(f ∧t)−I(f ∧r))/(t−r).

Thus, F (r) = I∗(χ[f>r]) 6 I((f ∧ t− f ∧ r)/(t− r)) < +∞ and hence the decreasing

function F goes in fact from R+ into R+. Therefore F is Riemann integrable on

every interval in R+.

Moreover,

I∗(χ[f>t]) 6
I(f ∧ t) − I(f ∧ r)

t − r
6 I∗(χ[f>r]),

that is,

(t − r)I∗(χ[f>t]) 6 I(f ∧ t) − I(f ∧ r) 6 (t − r)I∗(χ[f>r]).

Given a partition {r0, r1, . . . , rn−1, rn} of the interval [u, v] with 0 < u < v,

applying the last inequality on each subinterval (i.e., for t = ri and r = ri−1,

∀i = 1, 2, . . . , n), and adding over i, we deduce that:

n
∑

i=1

(ri − ri−1)I∗(χ[f>ri]) 6 I(f ∧ v) − I(f ∧ u) 6

n
∑

i=1

(ri − ri−1)I∗(χ[f>ri−1]).

Letting n → +∞, we obtain

∫ v

u

I∗(χ[f>r]) dr = I(f ∧ v) − I(f ∧ u) =

∫ v

u

I∗(χ[f>r]) dr
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and, since B is stonian, C0 and C∞, letting u → 0 and v → +∞, we deduce that

I(f) =

∫ +∞

0

I∗(χ[f>r]) dr =

∫ +∞

0

I∗(χ[f>r]) dr.

�

Keeping in mind that if f ∈ +R1(B, I) then the function I(χ[f>r]), in the variable

r, is defined for all r ∈ R+, except for a countable set (see Theorem 4.3) and that this

function coincides with I∗(χ[f>r]) on all its domain, we obtain the following corollary

with the desirable integral representation for the positive elements of R1(B, I).

Corollary 5.2. If B is stonian, C0 and C∞, then

I(f) =

∫ +∞

0

I(χ[f>r]) dr, ∀f ∈ +R1(B, I).

Theorem 4.13 in [23] is a particular case of this result. In fact, Corollary 5.2 can

be generalized in the following way (which also subsumes item (3) of Theorem 5.4

in [24]):

Theorem 5.3. If B is stonian, C0 and C+∞, then

I∗(f) =

∫ +∞

0

I∗(χ[f>r]) dr, ∀f ∈ R
X

+ .

P r o o f. Let us fix α := I∗(f) = sup{I(h) : h 6 f, h ∈ R1(B, I)}. We first

assume that I∗(χ[f>s]) = +∞ for some s ∈ R+.

On the one hand, since F is decreasing and F (s) = +∞, we have F (r) = +∞ for

all r ∈]0, s], which implies
∫ +∞

0
I∗(χ[f>r]) dr = +∞.

But, on the other hand, for each M > 0 there exists h ∈ +R1 with h 6 χ[f>s]

such that I(h) > M
s
. Setting g := sh ∈ +R1 we deduce that g 6 sχ[f>s] 6 f and

I(g) = sI(h) > M . Therefore, I∗(f) > I(g) > M and the arbitrariness of M yields

I∗(f) = +∞.

We have proved that if I∗(χ[f>s]) = +∞ for some s ∈ R+, then

∫ +∞

0

I∗(χ[f>r]) dr = +∞ = I∗(f).

Assume now that I∗(χ[f>r]) < +∞ for all r ∈ R+ and let h ∈ +R1 with h 6 f .

It follows from [h > r] ⊆ [f > r], that I∗(χ[h>r]) 6 I∗(χ[f>r]) and hence, by

Corollary 5.2, we have

I(h) =

∫ +∞

0

I∗(χ[h>r]) dr 6

∫ +∞

0

I∗(χ[f>r]) dr, ∀h ∈ +R1, h 6 f,
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which leads to

α 6

∫ +∞

0

I∗(χ[f>r]) dr.

In order to prove the opposite inequality, let u, v ∈ R be such that 0 < u < v <

+∞. Given ε > 0, by definition of the Riemann integral on [u, v] there exists a

partition P ∈ P([u, v]), P = {r0, . . . , rn}, such that

∫ v

u

I∗(χ[f>r]) dr 6

n
∑

i=1

(ri − ri−1)I∗(χ[f>ri]) +
ε

2
.

Since I∗(χ[f>ri]) = sup{I(h) : h ∈ +B, h 6 χ[f>ri]} < +∞ for all i = 1, . . . , n,

given ε/2(v − u), there exists hi ∈ +R1, hi 6 χ[f>ri] such that

I∗(χ[f>ri]) 6 I(hi) +
ε

2(v − u)
, ∀i = 1, . . . , n.

Thus,

∫ v

u

I∗(χ[f>ri]) dr 6

n
∑

i=1

(ri − ri−1)I∗(χ[f>ri]) +
ε

2
6

6

n
∑

i=1

(ri − ri−1)
(

I(hi) +
ε

2(v − u)

)

+
ε

2
=

6

n
∑

i=1

(ri − ri−1)I(hi) + ε.

Setting h :=
n
∑

i=1

(ri − ri−1)hi, we have h ∈ +R1, h 6 (f − u)+ ∧ (v − u) 6 f and
∫ v

u
I∗(χ[f>r]) dr 6 I(h) + ε. Therefore,

∫ v

u

I∗(χ[f>r]) dr 6 I∗(f) = α, ∀u, v ∈ R, 0 < u < v < +∞,

which implies that
∫ +∞

0

I∗(χ[f>r]) dr 6 α.

�

A natural question arises at this moment: Is it possible to obtain a representation

of this type for the integral without any continuity condition? The answer consists

in the negative since both the weak continuity conditions C0 and C∞ are necessary

conditions, that is, we have

1137



Proposition 5.4. If (X, B, I) is a stonian Loomis system such that

I(f) =

∫ +∞

0

I(χ[f>r]) dr, ∀f ∈ +B,

then B is C0 and C∞.

P r o o f. For every t, r < 0 the set [f ∧ t > r] coincides with [f > r] if r 6 t and

it is the empty set if r > t. Thus, we have

I(f ∧ t) =

∫ +∞

0

I(χ[f∧t>r]) dr =

∫ t

0

I(χ[f>r]) dr.

Therefore,

lim
t→0

I(f ∧ t) = lim
t→0

∫ t

0

I(χ[f>r]) dr = 0

and

lim
t→+∞

I(f ∧ t) = lim
t→+∞

∫ t

0

I(χ[f>r]) dr =

∫ +∞

0

I(χ[f>r]) dr = I(f),

which proves that B satisfies the C0 and C∞ conditions. �

We summarize the results of this section in

Corollary 5.5. Let (X, B, I) be a stonian Loomis system. The following asser-

tions are equivalent:

(i) B is C0 and C∞.

(ii) R1(B, I) is C0 and C∞.

(iii) I(f) =
∫ +∞

0 I(χ[f>r]) dr, ∀f ∈ +R1(B, I).
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