Previous |  Up |  Next

Article

Keywords:
${\rm KC}$-space; strongly ${\rm KC}$-space; ${\rm FDS}$-property; maximal (countably) compact
Summary:
In this article we introduce the notion of strongly ${\rm KC}$-spaces, that is, those spaces in which countably compact subsets are closed. We find they have good properties. We prove that a space $(X, \tau )$ is maximal countably compact if and only if it is minimal strongly ${\rm KC}$, and apply this result to study some properties of minimal strongly ${\rm KC}$-spaces, some of which are not possessed by minimal ${\rm KC}$-spaces. We also give a positive answer to a question proposed by O. T. Alas and R. G. Wilson, who asked whether every countably compact ${\rm KC}$-space of cardinality less than $c$ has the ${\rm FDS }$-property. Using this we obtain a characterization of Katětov strongly ${\rm KC}$-spaces and finally, we generalize one result of Alas and Wilson on Katětov-${\rm KC}$ spaces.
References:
[1] Alas, O. T., Tkachenko, M. G., Tkachuk, V. V., Wilson, R. G.: The ${\rm FDS}$-property and spaces in which compact sets are closed. Sci. Math. Jap. 61 (2005), 473-480. MR 2140109
[2] Alas, O. T., Wilson, R. G.: Spaces in which compact subsets are closed and the lattice of $\rm T_1$-topologies on a set. Commentat. Math. Univ. Carol. 43 (2002), 641-652. MR 2045786
[3] Cameron, D. E.: Maximal and minimal topologies. Trans. Amer. Math. Soc. 160 (1971), 229-248. DOI 10.1090/S0002-9947-1971-0281142-7 | MR 0281142 | Zbl 0202.22302
[4] Engelking, R.: General Topology. PWN Warszawa (1977). MR 0500780 | Zbl 0373.54002
[5] Fleissner, W. G.: A $T_B$-space which is not Katětov $T_B$. Rocky Mt. J. Math. 10 (1980), 661-663. DOI 10.1216/RMJ-1980-10-3-661 | MR 0590229 | Zbl 0448.54021
[6] Kelley, J. L.: General Topology. Springer New York (1975). MR 0370454 | Zbl 0306.54002
[7] Kunen, K., Vaughan, J. E.: Handbook of Set-Theoretic Topology. North Holland Amsterdam-New York-Oxford (1984). MR 0776619 | Zbl 0546.00022
[8] Kunzi, H.-P. A., Zypen, D. van der: Maximal (sequentially) compact topologies. In: Proc. North-West Eur. categ. sem., Berlin, Germany, March 28-29, 2003 World Scientific River Edge (2004), 173-187. MR 2126999
[9] Larson, R.: Complementary topological properties. Notices Am. Math. Soc. 20 (1973), 176.
[10] Smythe, N., Wilkins, C. A.: Minimal Hausdorff and maximal compact spaces. J. Austr. Math. Soc. 3 (1963), 167-171. DOI 10.1017/S1446788700027907 | MR 0154254 | Zbl 0163.17201
[11] Vidalis, T.: Minimal ${\rm KC}$-spaces are countably compact. Commentat. Math. Univ. Carol. 45 (2004), 543-547. MR 2103148
[12] Wilansky, A.: Between $\rm T_1$ and $\rm T_2$. Am. Math. Mon. 74 (1967), 261-266. MR 0208557
Partner of
EuDML logo