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Abstract. In this article we introduce the notion of strongly KC-spaces, that is, those
spaces in which countably compact subsets are closed. We find they have good properties.
We prove that a space (X, τ ) is maximal countably compact if and only if it is minimal
strongly KC, and apply this result to study some properties of minimal strongly KC-spaces,
some of which are not possessed by minimal KC-spaces. We also give a positive answer to
a question proposed by O.T. Alas and R.G. Wilson, who asked whether every countably
compact KC-space of cardinality less than c has the FDS-property. Using this we obtain a
characterization of Katětov strongly KC-spaces and finally, we generalize one result of Alas
and Wilson on Katětov-KC spaces.
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1. Introduction

The notion of KC-space was first introduced by A. Wilansky [12] in 1967. A

topological space (X, τ) is called a KC-space if every compact subset is closed. One

of the old questions on KC-spaces posed by R. Larson [9] is whether a space is

maximal compact if and only if it is minimal KC. Many authors have investigated

this problem, among them we might mention [1], [2], [10] and [11]. However, up to

now, Larson’s original question remains open and in the past few years, many new

problems were formulated. For example, it is still an open problem whether a closed

subspace of a minimal KC-space is minimal KC [1] and Alas [2] asked whether every

countably compact KC-space of size less than c has the FDS-property. A related

question to R. Larson’s is whether every KC-space is Katětov-KC, that is, whether

every KC topology contains a minimal KC topology. W. Fleissner [5] proved that
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this is not always true. Recently, for countable KC-spaces, a characterization of

Katětov-KC spaces has been given [2].

In this article, we introduce the notion of strongly KC-spaces, that is, those spaces

in which every countably compact subset is closed. We find minimal strongly KC-

spaces have many nice properties, some of which are not possessed by minimal KC-

spaces or remain uncertain for them. In the first section of this paper, we outline

some known notions and preliminary results which will be used in the sequel. In

the second section, we briefly discuss the relationship between strongly KC and KC-

spaces. A natural question analogous to R. Larson’s is whether a space (X, τ) is

maximal countably compact if and only if it is minimal strongly KC. We give a

positive answer to this question in Section 3. Applying this we show that minimal

strongly KC-spaces are closed hereditarily and study some properties of them. We

also answer affirmatively Question D of [2], and using this, for strongly KC-spaces of

size less than c, we give a characterization of Katětov strongly KC-spaces. Finally

we generalize Theorem 18 of [2] to hereditarily Lindelof spaces.

We first recall several definitions.

Definition 1.1 ([2]). IfP is a topological property, then a space (X, τ) is said to

be minimal P (respectively, maximal P) if (X, τ) has propertyP but no topology

on X which is strictly smaller (respectively, strictly larger) than τ has P.

A space (X, τ) is said to be Katětov P if there is a topology σ ⊂ τ such that

(X, σ) is minimal P.

Specifically, we are interested here in minimal (strongly) KC-spaces, Katětov

(strongly) KC-spaces and maximal (countably) compact spaces.

Definition 1.2 ([6]). A filter over a set X is a collection F of subsets of X such

that

(i) ∅ ∈ F ;

(ii) if F1 ∈ F and F2 ∈ F then F1 ∩ F2 ∈ F ;

(iii) if A, B ⊂ X , A ∈ F and B ⊂ A then B ∈ F .

If a filter on X has the property that there is no filter on X which is strictly finer

than F , F is called an ultrafilter on X .

Following [11], for κ an infinite cardinal number, an ultrafilter F over κ is called

uniform if |F | = κ for all F ∈ F .

Notice the following crucial property of the ultrafilter [6]:

If F is an ultrafilter in X and the union of two sets is a member of F , then one

of the two sets belongs to F . In particular, if A is a subset of X , then either A or

X − A belongs to F .
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Definition 1.3 ([4]). A topological space is called a sequential space if a set

A ⊂ X is closed if and only if together with any sequence it contains all its limits.

Definition 1.4 ([2]). A space is said to have the finite derived set property

(hereafter abbreviated as the FDS-property) if each infinite subset A ⊂ X contains

an infinite subset with only finitely many accumulation points in X .

Definition 1.5 ([8]). A topological space is called a US-space provided that

each convergent sequence has a unique limit.

By definitions, clearly we have

Hausdorff ⇒ KC ⇒ US ⇒ T1.

The following results are known and will be used in the next two sections.

Lemma 1.6 ([10]). A maximal compact space is KC, and is minimal KC.

Lemma 1.7 ([3]). A topological space is maximal (countably) compact if and

only if its (countably) compact subsets are precisely the closed sets.

Lemma 1.8 ([1]). A first countable KC-space is minimal KC if and only if it is

compact Hausdorff.

Lemma 1.9 ([2]). A compact, countable KC-space is sequential.

Lemma 1.10 ([11]). Minimal KC-spaces are countably compact.

Lemma 1.11 ([1]). A compact, hereditarily Lindelof KC-space is sequential.

Lemma 1.12 ([1]). Every sequential KC-space is Katětov-KC.

In this article, for A ⊂ X , the cardinality of A is denoted by |A|. The closure of

a set A in a topological space (X, τ) is denoted by clτ (A), or simply by cl(A) if no

confusion is possible, and the set of accumulation points of A with respect to the

topology τ is denoted by Ad
τ or simply Ad if no confusion arises. Denote the relative

topology of the set A with respect to the topology τ by τ |A. The symbols ω and ω1

stand for the first infinite and the first uncountable ordinal number respectively and

c = 2ω. All notation and terminology not defined here can be found in [4].
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2. Relationship between strongly KC and KC-spaces

By definitions, it is clear that every strongly KC-space is KC, while Example 2.1

below shows that the inverse is not always true.

Example 2.1. Let X = [0, ω1]. Obviously X is a KC-space since X is Haus-

dorff. However, since [0, ω1) is countably compact but not closed, it follows from the

definition of strongly KC-space that X is not strongly KC.

Though strongly KC-spaces must be KC, minimal strongly KC and minimal KC-

spaces do not imply each other. We will now illustrate this by examples. First we

present two lemmas.

Lemma 2.2. Let (X, τ) be a maximal countably compact space, then (X, τ) is

minimal strongly KC.

P r o o f. It follows from Lemma 1.7 and the definition of strongly KC-space

that (X, τ) is strongly KC. Let σ ⊂ τ but σ 6= τ be a topology on X . Take any

U ∈ τ \ σ, then X \U is closed in (X, τ). Thus, X \U is countably compact in (X, τ)

by Lemma 1.7 and also countably compact in (X, σ) since σ ⊂ τ . Since U /∈ σ, it

follows that X \ U is not closed in (X, σ) and therefore (X, σ) is not strongly KC.

Hence (X, τ) is minimal strongly KC. �

By Lemma 1.7 and the definition of (strongly) KC-spaces, we obtain easily the

following lemma:

Lemma 2.3. A space (X, τ) is maximal (countably) compact if and only if it is

(countably) compact (strongly) KC.

Example 2.4. Example of a minimal strongly KC but not minimal KC-space.

Let X = [0, ω1). From [3] we know that X is maximal countably compact and

hence it is minimal strongly KC by Lemma 2.2. It follows from Lemma 1.8 that X is

not minimal KC, since X is first countable but not compact.

Example 2.5. Example of a minimal KC but not minimal strongly KC-space.

Let X = βω, the Stone-Cech compactification of natural numbers. From [3], we

know that X is maximal compact and hence it is minimal KC by Lemma 1.6. Note

in [7] the two facts about X : (i) There exists a countably compact subspace Y with

ω ⊂ Y ⊂ βω and |Y | 6 c; (ii) Every infinite set in βω has 2c accumulation points.

Thus we may assume that A ⊂ X satisfies the condition (i), then by (ii), we have

cl(A) 6= A, so A is not closed in X and hence X is not strongly KC. Therefore, X is

not minimal strongly KC.
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Examples 2.4 and 2.5 show that minimal strongly KC and minimal KC-spaces are

not the same. However it is easy to see that a minimal KC-space which is stronglyKC

is minimal strongly KC. What’s more, under certain conditions, these two notions

are equivalent.

Theorem 2.6. If X is a hereditarily Lindelof or sequential space, then X is KC

if and only if it is strongly KC.

P r o o f. Sufficiency is trivial. It remains to prove the necessity.

If X is a hereditarily Lindelof space, since A ⊂ X is countably compact if and

only it is compact, we have that X is KC implies X is strongly KC.

If X is a sequential KC-space, suppose A ⊂ X is countably compact. If A is not

closed, then there exist x ∈ cl(A) \ A and {xn : n ∈ ω} ⊂ A such that xn → x (n →

∞). Since {xn : n ∈ ω} ∪ {x} is compact and X is KC, we have {xn : n ∈ ω} ∪ {x}

is closed and hence x is the unique accumulation point of {xn : n ∈ ω}. However,

{xn : n ∈ ω} ⊂ A and A is countably compact, thus {xn : n ∈ ω} must have an

accumulation point a in A. Clearly a 6= x, a contradiction. So X is strongly KC. �

3. Properties of minimal strongly KC-spaces

There has been some interesting work on R. Larson’s question mentioned in the

first section. In [2], it was shown that in the class of KC-spaces, each countable space

has the FDS-property and this result was used to prove that every countable minimal

KC-space is compact. In [1], the authors showed that in some fairly wide classes of

KC-spaces, including all hereditarily Lindelof spaces, minimal KC implies compact.

And T. Vidalis [11] proved that minimal KC-spaces are countably compact.

Although minimal strongly KC and minimal KC-spaces do not imply each other,

it is interesting that minimal strongly KC- spaces are also countably compact. Now

we are going to present a proof.

Theorem 3.1. Minimal strongly KC-spaces are countably compact.

P r o o f. Suppose by way of contradiction that (X, τ) is a minimal strongly

KC-space which is not countably compact. Then there exists a set {xn : n ∈ ω}

which has no accumulation points in X , that is, {xn : n ∈ ω} is a closed discrete set

of X . Put D = {xn : 0 < n < ω}. Let F be a uniform ultrafilter on D, then by the

definition, for any F ∈ F we have |F | = ω. Define

µ = {U ∈ τ : x0 /∈ U} ∪ {U ∈ τ : x0 ∈ U and U ∩ D ∈ F}.
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Then (X, µ) is a T1 space and µ ⊂ τ . From the definition of µ, it is obvious that

U ⊂ X is an open neighborhood of x0 in (X, µ) if and only if U is an open set

in (X, τ) which contains x0 and a member of F . Thus, x0 ∈ clµ(D) \ D. Since D is

closed in (X, τ), it follows that µ 6= τ . For any B ⊂ X , it is easy to check that

(3.1) clτ (B) ⊂ clµ(B), clµ(B) ⊂ clτ (B) ∪ {x0} and hence clµ(B) \ clτ (B) ⊂ {x0}.

Therefore, for any B ⊂ X , x0 is the unique point which can be an accumulation

point for B in (X, µ) while not being an accumulation point of it in (X, τ).

We will show that (X, µ) is a strongly KC-space and thus deduce a contradiction,

since (X, τ) is minimal strongly KC. Let K ⊂ X be countably compact in (X, µ).

Then there are two possibilities:

(1) If x0 /∈ K, then µ|K = τ |K. So K is also a countably compact subset of (X, τ)

and therefore K is closed in (X, τ). Since {xn : n ∈ ω} has no accumulation

points in (X, τ), it follows that {xn : n ∈ ω} ∩ K is finite. Thus we have

{xn : n ∈ ω}∩K /∈ F , since F is a uniform ultrafilter over D. Hence D \ ({xn :

n ∈ ω} ∩ K) = D \ (D ∩ K) = D \ K ∈ F . Since D \ K ⊂ X \ K ∈ τ and

x0 ∈ X \ K, it follows that X \ K is an open neighborhood of x0 in (X, µ) and

therefore x0 /∈ clµ(K). Then we have clµ(K) = clτ (K) = K by (3.1) and hence

K is closed in (X, µ).

(2) If x0 ∈ K. Let L = clτ (K) ∩ D. By (3.1), clµ(K) = clτ (K), thus it remains to

prove that K is closed in (X, τ).

If L /∈ F , then F = D\L ∈ F and clearly F∩clτ (K) = ∅. So for each x ∈ F , there

is Vx ∈ τ such that x ∈ Vx and Vx∩F = ∅. Suppose that K is not countably compact

in (X, τ), then there exists a set S = {sn : n ∈ ω} ⊂ K without accumulation

points in K with respect to the topology τ . We may assume that sn 6= x0 for any

n ∈ ω. Since x0 is not an accumulation point of S in (X, τ), there is V (x0) ∈ τ

such that x0 ∈ V (x0) and V (x0) ∩ S = ∅. Note that V (x0) ∪ (
⋃

{Vx : x ∈ F}) is an

open neighborhood of x0 in (X, µ), we know x0 is not an accumulation point of S

in (X, µ). Hence, by the comments following (3.1), S has no accumulation points

in K with respect to the topology µ, contradicting the fact that K is countably

compact in (X, µ). Consequently K is countably compact in (X, τ) and hence closed

in (X, τ), since (X, τ) is strongly KC.

If, on the other hand, L ∈ F , then there are two cases to consider:

a) If K ∩ D ∈ F , then |K ∩ D| = ω. Let K ∩ D = F1 ∪ F2 with F1 ∩ F2 = ∅ and

|F1| = |F2| = ω. Then by the properties of ultrafilters, there is at least one of Fi

(i = 1, 2) belonging to F ; we may assume without loss of generality that F1 ∈ F .

Since F2 is closed in (X, τ), for each x ∈ F1, there is Wx ∈ τ such that x ∈ Wx

and Wx ∩ F2 = ∅. Let W (F1) =
⋃

{Wx : x ∈ F1}. Then W (F1) ∩ F2 = ∅ and so
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((X \F2)∪W (F1))∩F2 = ∅. Since (X \F2)∪W (F1) is an open neighborhood of x0

in (X, µ), we know that x0 is not an accumulation point of F2 in (X, µ). Since F2 has

no accumulation points in (X, τ), it follows that F2 ⊂ K has no accumulation points

in (X, µ), a contradiction.

b) If K ∩ D /∈ F , then D \ (D ∩ K) = D \ K ∈ F . Put F0 = (D \ K) ∩ L

and write F0 = {xnk
: k = 1, 2, . . .}. Thus F0 ∈ F and clearly F0 ⊂ clτ (K) \ K.

Thus K is not closed in (X, τ) and hence is not countably compact in (X, τ), since

(X, τ) is strongly KC. Therefore, there is an infinite set {yn : n ∈ ω} ⊂ K without

accumulation points in K with respect to the topology τ , we may assume that

yn 6= x0 for any n ∈ ω and since x0 ∈ K, there exists an open neighborhood U(x0)

of x0 in (X, τ) with

U(x0) ∩ {yn : n ∈ ω} = ∅.

We claim that for every infinite subset {ynk
: k ∈ ω} of {yn : n ∈ ω} and for

every z ∈ F0 there is an open neighborhood U(z) of z in (X, τ) such that {ynk
: k ∈

ω} \ U(z) is infinite.

Assume to the contrary that there exist {ynk
: k ∈ ω} ⊂ {yn : n ∈ ω} and some

z ∈ F0 such that, for any open neighborhood U of z in (X, τ), {ynk
: k ∈ ω} \U is a

finite set. So ynk
→ z (k → ∞) in (X, τ) and therefore {ynk

: k ∈ ω}∪{z} is compact

in (X, τ). Hence {ynk
: k ∈ ω} ∪ {z} is closed in (X, τ), since (X, τ) is a strongly

KC-space. But, sinceF is the uniform ultrafilter onD, {z} /∈ F and soD\{z} ∈ F .

Let F ′ = (D \ {z})∩F0, then by the definition of filter, F
′ ∈ F . Clearly z /∈ F ′ and

F ′ ⊂ F0, and so F ′∩K = ∅. Since {ynk
: k ∈ ω} ⊂ {yn : n ∈ ω} ⊂ K, it follows that,

for every x ∈ F ′, x /∈ {ynk
: k ∈ ω} ∪ {z}, and so there is an open neighborhood Ux

of x in (X, τ) such that Ux∩({ynk
: k ∈ ω}∪{z}) = ∅. Let U(F ′) =

⋃

{Ux : x ∈ F ′},

then F ′ ⊂ U(F ′). So U(F ′) ∪ U(x0) is an open neighborhood of x0 in (X, µ) and

(U(F ′) ∪U(x0)) ∩ {ynk
: k ∈ ω} = ∅. Consequently x0 is not an accumulation point

of {ynk
: k ∈ ω} in (X, µ). Since {ynk

: k ∈ ω} ⊂ {yn : n ∈ ω} has no accumulation

points in K with respect to the topology τ , it follows that {ynk
: k ∈ ω} has no

accumulation points in K with respect to the topology µ, contradicting the fact that

K is countably compact in (X, µ).

So, from the previous proof, it follows that for xn1
∈ F0, there is an open

neighborhood U(xn1
) of xn1

in (X, τ) such that {yn : n ∈ ω} \ U(xn1
) is infinite.

Choose z1 ∈ {yn : n ∈ ω} \ U(xn1
). Since (X, τ) is strongly KC, obviously it

is T1. Then for xn2
∈ F0, there is an open neighborhood U(xn2

) of xn2
in (X, τ)

such that z1 /∈ U(xn2
) and {yn : n ∈ ω} \ (U(xn1

) ∪ U(xn2
)) is infinite. Choose

z2 ∈ {yn : n ∈ ω} \ (U(xn1
) ∪ U(xn2

)) with z2 6= z1. Generally, suppose that we

have chosen open neighborhoods U(xn1
), . . . , U(xnk

) of xn1
, . . . , xnk

in (X, τ) and

points z1, . . . , zk such that zi /∈ U(xnj
) for each i < j 6 k, zk /∈ {z1, . . . , zk−1}
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and {yn : n ∈ ω} \ (U(xn1
) ∪ U(xn2

) ∪ . . . ∪ U(xnk
)) is infinite. Let U(xnk+1

)

be an open neighborhood of xnk+1
in (X, τ) satisfying zi /∈ U(xnk+1

) for each

i 6 k and {yn : n ∈ ω} \ (U(xn1
) ∪ U(xn2

) ∪ . . . ∪ U(xnk+1
)) is infinite. Take

zk+1 ∈ {yn : n ∈ ω}\(U(xn1
)∪U(xn2

)∪. . .∪U(xnk+1
)) such that zk+1 /∈ {z1, . . . , zk}.

Since zi /∈ U(x0) ∪ U(xnj
) for each i, j ∈ ω, it follows that

{zn : n ∈ ω} ∩
(

U(x0) ∪
⋃

{U(xnk
) : k = 1, 2, . . .}

)

= ∅.

Since F0 ⊂
⋃

{U(xnk
) : k = 1, 2, . . .}, clearly U(x0) ∪ (

⋃

{U(xnk
) : k = 1, 2, . . .}) is

an open neighborhood of x0 in (X, µ) and so x0 is not an accumulation point of

{zn : n ∈ ω} with respect to the topology µ. However, {zn : n ∈ ω} ⊂ {yn : n ∈ ω}

has no accumulation points in K with respect to the topology τ , therefore {zn : n ∈

ω} ⊂ K has no accumulation points in K with respect to the topology µ, which is

impossible since K is countably compact in (X, µ).

Now we have shown that (X, µ) is strongly KC, which contradicts the fact that

(X, τ) is minimal strongly KC. The theorem follows. �

It is natural to ask whether every minimal strongly KC-space is compact. From

Example 2.4 we deduce a negative answer to this question. However, it remains

unknown whether every minimal KC-space is compact.

Below we will use Theorem 3.1 to establish two corollaries.

Corollary 3.2. A closed subspace of a minimal strongly KC-space is minimal

strongly KC.

P r o o f. Let (X, τ) be a minimal strongly KC-space and Y ⊂ X be closed.

By Theorem 3.1, X is countably compact and hence Y is also countably compact.

Clearly, Y is also strongly KC, and it follows from Lemmas 2.3 and 2.2 that Y is

minimal strongly KC. �

The next result is an immediate consequence of Lemma 2.2, Theorem 3.1 and

Lemma 2.3:

Corollary 3.3. A space (X, τ) is maximal countably compact if and only if it is

minimal strongly KC.

Theorem 3.4. Let (X, τ) be a minimal strongly KC-space. Then X has the

FDS-property if and only if it is a sequential space.

P r o o f. For the necessity, suppose that A ⊂ X is not closed. Since (X, τ) is

strongly KC, A is not countably compact and hence we can find a countable discrete
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subset D = {xn : n ∈ ω} ⊂ A which is closed in A, that is, Dd ⊂ X \ A. Since

X has the FDS-property, there is some countably infinite set E ⊂ D with only a

finite number of accumulation points in X and Ed ⊂ Dd ⊂ X \ A. Thus cl(E) is

a countable, strongly KC subspace and by Corollary 3.2 and Theorem 3.1, cl(E) is

countably compact. Thus Ed 6= ∅ and cl(E) is compact. It follows from Lemma 1.9

that cl(E) is sequential, thus there is a sequence in E converging out of E and hence

out of A. Consequently, X is a sequential space.

The sufficiency is trivial since we observe in [2] that each sequential KC-space has

the FDS-property. �

However, the following example shows that a minimal KC-space with the FDS-

property need not be sequential.

Example 3.5. Let X = [0, ω1]. ObviouslyX is compact and KC. By Lemmas 2.3

and 1.6, we know that X is minimal KC. Since [0, ω1) is a sequential KC-space, by

the proof of the preceding theorem, [0, ω1) has the FDS-property and so does X .

Clearly X is not a sequential space, since [0, ω1) is not closed in X but ω1 is not the

limit point of any sequence of points in [0, ω1).

Theorem 3.6. An infinite minimal strongly KC-space possesses a non-trivial

convergent sequence.

P r o o f. Suppose X is such a space. Then by Theorem 3.1, X is countably

compact. Let p ∈ X be non-isolated. Then X \{p} is not closed, hence not countably

compact, since X is strongly KC. So there is a countably infinite subset A ⊂ X \{p}

which has no accumulation points in X \ {p} and therefore, for every x ∈ A, there

is an open neighborhood Ux of x such that Ux ∩ A = {x}. It is clear that p is the

unique accumulation point of A in X and so A ∪ {p} is closed in X . Thus A ∪ {p}

is countably compact and hence compact in X . Let A = {xn : n ∈ ω}. It is obvious

that, for any open neighborhood V of p, the collection {Uxn
: n ∈ ω}∪{V } is an open

cover of A∪{p} and hence it has a finite subcover, say, Uxn1
∪Uxn2

∪ . . .∪Uxnk
∪V .

Since Uxni
∩ A = {xni

} for i = 1, 2, . . . , k, it follows that xn ∈ V whenever n > nk

and this implies xn → p (n → ∞). �

But, Theorem 3.6 does not hold for minimal KC-spaces.

Example 3.7. Let X = βω. It follows from Example 2.5 that X is minimal KC.

But from [7] we know that there are no non-trivial convergent sequences in X .

In [2], the authors raised the following question:

Question D. Does every countably compact KC-space of size less than c have

the FDS-property?
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Now we will give a positive answer to the above question.

Theorem 3.8. A countably compact KC-space of cardinality less than c has the

FDS-property.

P r o o f. Suppose X satisfies the hypothesis. According to [7], every countably

compact space of cardinality less than c is sequentially compact, so X is sequentially

compact. Thus for any infinite subset A ⊂ X , we may assume without loss of

generality that A = {xn : n ∈ ω}, then A must have a subsequence {xnk
: k =

1, 2, . . .} such that xnk
→ x (k → ∞). Thus {xnk

: k = 1, 2, . . .} ∪ {x} is compact

and hence closed in X , so x is the unique accumulation point of {xnk
: k = 1, 2, . . .}.

Therefore X has the FDS-property. �

In [2], for countable KC-spaces, a characterization of Katětov-KC spaces is given.

Below we will give a characterization of Katětov strongly KC-spaces of cardinality

less than c and at last extend the previous result of [2] to hereditarily Lindelof spaces.

Theorem 3.9. Let (X, τ) be a strongly KC-space and |X | < c. Then (X, τ) is

Katětov strongly KC if and only if there is a weaker sequential strongly KC topology

σ ⊂ τ .

P r o o f. If (X, τ) is a Katětov strongly KC-space and |X | < c, then by the

definition, there is a topology σ ⊂ τ such that (X, σ) is a minimal strongly KC-

space. From Theorem 3.1, it follows that (X, σ) is countably compact and so it has

the FDS-property by Theorem 3.8. Therefore, by Theorem 3.4, (X, σ) is sequential.

For the sufficiency, suppose that (X, τ) is a strongly KC-space with |X | < c and

σ ⊂ τ is a sequential strongly KC topology. If (X, σ) is countably compact, then by

Lemmas 2.3 and 2.2, it is minimal strongly KC and hence (X, τ) is Katětov strongly

KC. So we assume that (X, σ) is not countably compact. Fix p ∈ X and define a

new topology µ on X as follows:

µ = {U ∈ σ : p /∈ U} ∪ {U ∈ σ : p ∈ U and X \ U is countably compact in (X, σ)}.

Clearly, (X, µ) is a countably compact T1-space and µ ⊂ σ. To complete the proof,

we need to show that (X, µ) is a minimal strongly KC-space. By Lemmas 2.3 and

2.2, we need only to show that (X, µ) is a strongly KC-space. To this end, suppose

that K ⊂ X is a countably compact subset of (X, µ). It is clear that

(3.2) clσ(K) ⊂ clµ(K), clµ(K) ⊂ clσ(K) ∪ {p} and hence clµ(K) \ clσ(K) ⊂ {p}.

There are two possibilities:
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(1) If p /∈ K, then σ|K = µ|K, K is countably compact in (X, σ), and hence closed

in (X, σ). So X \ K is an open neighborhood of p in (X, µ). Thus, p /∈ clµ(K) and

hence we have clµ(K) = clσ(K) = K by (3.2). So, K is closed in (X, µ).

(2) If p ∈ K, then by (3.2), clµ(K) = clσ(K). So ifK is not closed in (X, µ), then it

is not closed in (X, σ) either. Since (X, σ) is sequential, there is some x ∈ clσ(K)\K

and a sequence {xn}n∈ω in K convergent to x with respect to the topology σ. Since

x 6= p, we may assume that xn 6= p for all n ∈ ω. Then C = {xn : n ∈ ω} ∪ {x} is

compact in (X, σ) and thus closed in (X, σ), since (X, σ) is strongly KC. Therefore,

x is the unique accumulation point of {xn : n ∈ ω} in (X, σ). Since µ ⊂ σ, C is

also compact in (X, µ) and therefore countably compact in (X, µ). Clearly, p /∈

C and hence X \ C is an open neighborhood of p in (X, µ). Thus p is not an

accumulation point of {xn : n ∈ ω} with respect to the topology µ, since {xn : n ∈ ω}

has no accumulation points in K with respect to the topology σ, we conclude that

{xn : n ∈ ω} ⊂ K has no accumulation points in K with respect to the topology µ

either, contradicting the fact that K is countably compact in (X, µ). So K is closed

in (X, µ). The theorem follows. �

In fact, Theorem 3.9 can be improved. We need the following lemma.

Lemma 3.10. If (X, τ) is a sequential US-space, then X is strongly KC.

P r o o f. Let A be a countably compact subset of X . If A is not closed, since

(X, τ) is a sequential space, there is some x ∈ cl(A) \ A and a sequence {xn}n∈ω ⊂

A convergent to x. Since A is countably compact, {xn : n ∈ ω} must have an

accumulation point y in A and so {xn : n ∈ ω}∪ {x} is not closed in X . Again since

X is sequential, it follows that there is some sequence {xnk
: k ∈ ω} ⊂ {xn : n ∈ ω}

which converges to x′ and x′ /∈ {xn} ∪ {x}. Then {xnk
: k ∈ ω} must also converge

to x, contradicting the definition of US-space. Therefore, X is strongly KC. �

After the above arguments, the next statement becomes obvious:

Corollary 3.11. Let (X, τ) be a strongly KC-space and |X | < c. Then (X, τ) is

Katětov strongly KC if and only if there is a weaker sequential US topology σ ⊂ τ .

The next result generalizes Theorem 18 in [2], stating that a countable KC-

space (X, τ) is Katětov-KC if and only if there is a weaker sequential KC topology

σ ⊂ τ .
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Theorem 3.12. A hereditarily Lindelof KC-space (X, τ) is Katětov-KC if and

only if there is a weaker sequential KC topology σ ⊂ τ .

P r o o f. If (X, τ) is Katětov-KC, then by the definition, there is a weaker topol-

ogy σ ⊂ τ such that (X, σ) is minimal KC. By Lemma 1.10, (X, σ) is countably

compact. Since (X, τ) is hereditarily Lindelof, it follows that (X, σ) is also heredi-

tarily Lindelof and hence compact. So, (X, σ) is sequential by Lemma 1.11.

The sufficiency follows easily from Lemma 1.12. �

The next statement is obvious and further generalizes Theorem 18 in [2].

Corollary 3.13. A hereditarily Lindelof KC-space (X, τ) is Katětov-KC if and

only if there is a weaker sequential US topology σ ⊂ τ .
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