[1] Aassila, M.:
Global existence of solutions to a wave equation with damping and source terms. Diff. Int. Eqs. 14 (2001), 1301-1314.
MR 1859607 |
Zbl 1018.35053
[2] Cavalcanti, M. M.:
Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete Contin. Dynam. Systems 8 (2002), 675-695.
MR 1897875 |
Zbl 1009.74034
[3] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Ma, T. F., Soriano, J. A.:
Global existence and asymptotic stability for viscoelastic problems. Diff. Int. Eqs. 15 (2002), 731-748.
MR 1893844
[6] Kormornik, V., Zuazua, E.:
A direct method for the boundary stabilization of the wave equation. J. Math. Pures et Appl. 69 (1990), 33-54.
MR 1054123
[7] Lions, J. L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier Villars, Paris (1969).
MR 0259693 |
Zbl 0189.40603
[9] Miettinen, M., Panagiotopoulos, P. D.:
On parabolic hemivariational inequalities and applications. Nonlinear Anal. 35 (1999), 885-915.
MR 1664899 |
Zbl 0923.35089
[10] Rivera, J. E. Munoz, Salvatierra, A. P.:
Asymptotic behavior of the energy in partially viscoelastic materials. Quart. Appl. Math. 59 (2001), 557-578.
DOI 10.1090/qam/1848535 |
MR 1848535
[11] Panagiotopoulos, P. D.:
Inequality Problems in Mechanics and Applincations. Convex and Nonconvex Energy Functions, Birkhäuser, Basel, Boston (1985).
MR 0896909
[12] Panagiotopoulos,, P. D.:
Hemivariational Inequalities and Applications in Mechanics and Engineering. Springer, New York (1993).
MR 1385670