Article
Keywords:
proper uniform algebra; Hausdorff space
Summary:
In this brief note, we see that if $A$ is a proper uniform algebra on a compact Hausdorff space $X$, then $A$ is flat.
References:
[3] Pełczyński, A.:
Some linear topological properties of separable function algebras. Proc. Amer. Math. Soc. 18 (1967), 652-660.
DOI 10.2307/2035434 |
MR 0213883
[4] Schäffer, J. J.:
Geometry of spheres in normed spaces, Lecture Notes in Pure and Applied Mathematics, No. 20. Marcel-Dekker, Inc., New York-Basel (1976).
MR 0467256