Previous |  Up |  Next

Article

Keywords:
matrix; clean element; unit-regularity
Summary:
A matrix $A\in M_n(R)$ is $e$-clean provided there exists an idempotent $E\in M_n(R)$ such that $A-E\in \mathop{\rm GL}_n(R)$ and $\det E=e$. We get a general criterion of $e$-cleanness for the matrix $[[a_1,a_2,\cdots ,a_{n+1}]]$. Under the $n$-stable range condition, it is shown that $[[a_1,a_2,\cdots ,a_{n+1}]]$ is $0$-clean iff $(a_1,a_2,\cdots ,a_{n+1})=1$. As an application, we prove that the $0$-cleanness and unit-regularity for such $n\times n$ matrix over a Dedekind domain coincide for all $n\geq 3$. The analogous for $(s,2)$ property is also obtained.
References:
[1] Camillo, V. P., Khurana, D. A.: Characterization of unit regular rings. Comm. Algebra 29 (2001), 2293-2295. DOI 10.1081/AGB-100002185 | MR 1837978 | Zbl 0992.16011
[2] Camillo, V. P., Yu, H. P.: Exchange rings, units and idempotents. Comm. Algebra 22 (1994), 4737-4749. DOI 10.1080/00927879408825098 | MR 1285703 | Zbl 0811.16002
[3] Chen, H.: Exchange rings with Artinian primitive factors. Algebr. Represent. Theory 2 (1999), 201-207. DOI 10.1023/A:1009927211591 | MR 1702275 | Zbl 0960.16009
[4] Chen, H.: Separative ideals, clean elements, and unit-regularity. Comm. Algebra 34 (2006), 911-921. DOI 10.1080/00927870500441825 | MR 2208108 | Zbl 1095.16005
[5] Fisher, J. W., Snider, R. L.: Rings generated by their units. J. Algebra 42 (1976), 363-368. DOI 10.1016/0021-8693(76)90103-4 | MR 0419510 | Zbl 0335.16014
[6] Henriksen, M.: Two classes of rings generated by their units. J. Algebra 31 (1974), 182-193. DOI 10.1016/0021-8693(74)90013-1 | MR 0349745 | Zbl 0285.16009
[7] Khurana, D., Lam, T. Y.: Clean matrices and unit-regular matrices. J. Algebra 280 (2004), 683-698. DOI 10.1016/j.jalgebra.2004.04.019 | MR 2090058 | Zbl 1067.16050
[8] Lam, T. Y.: A crash course on stable range, cancellation, substitution and exchange. J. Algebra Appl. 3 (2004), 301-343. DOI 10.1142/S0219498804000897 | MR 2096452 | Zbl 1072.16013
[9] Nicholson, W. K., Varadarjan, K.: Countable linear transformations are clean. Proc. Amer. Math. Soc. 126 (1998), 61-64. DOI 10.1090/S0002-9939-98-04397-4 | MR 1452816
[10] Nicholson, W. K., Zhou, Y.: Clean rings: A survey, Advances in Ring Theory. Proceedings of the 4th China-Japan-Korea International Conference (2004), 181-198. MR 2181857
[11] Raphael, R.: Rings which are generated by their units. J. Algebra 28 (1974), 199-205. DOI 10.1016/0021-8693(74)90032-5 | MR 0342554 | Zbl 0271.16013
[12] Samei, K.: Clean elements in commutative reduced rings. Comm. Algebra 32 (2004), 3479-3486. DOI 10.1081/AGB-120039625 | MR 2097473 | Zbl 1068.06020
Partner of
EuDML logo