Previous |  Up |  Next

Article

Keywords:
exchange ring; one-sided unit-regularity; idempotent
Summary:
Let $R$ be an exchange ring in which all regular elements are one-sided unit-regular. Then every regular element in $R$ is the sum of an idempotent and a one-sided unit. Furthermore, we extend this result to exchange rings satisfying related comparability.
References:
[1] Ara, P.: Strongly $\pi$-regular rings have stable range one. Proc. Amer. Math. Soc. 124 (1996), 3293-3298. DOI 10.1090/S0002-9939-96-03473-9 | MR 1343679 | Zbl 0865.16007
[2] Ara, P.: The exchange property for purely infinite simple rings. Proc. Amer. Math. Soc. 132 (2004), 2543-2547. DOI 10.1090/S0002-9939-04-07369-1 | MR 2054778 | Zbl 1055.16012
[3] Ara, P., Goodearl, K. R., O'Meara, K. C., Pardo, E.: Separative cancellation for projective modules over exchange rings. Israel J. Math. 105 (1998), 105-137. DOI 10.1007/BF02780325 | MR 1639739 | Zbl 0908.16002
[4] Ara, P., Goodearl, K. R., Pardo, E.: $K_0$ of purely infinite simple regular rings. $K$-Theory 26 (2002), 69-100. DOI 10.1023/A:1016358107918 | MR 1918211 | Zbl 1012.16013
[5] Camillo, V. P., Khurana, D. A.: Characterization of unit regular rings. Comm. Algebra 29 (2001), 2293-2295. DOI 10.1081/AGB-100002185 | MR 1837978 | Zbl 0992.16011
[6] Chen, H.: Elements in one-sided unit regular rings. Comm. Algebra 25 (1997), 2517-2529. DOI 10.1080/00927879708826002 | MR 1459573 | Zbl 0881.16004
[7] Chen, H.: Related comparability over exchange rings. Comm. Algebra 27 (1999), 4209-4216. DOI 10.1080/00927879908826691 | MR 1705862 | Zbl 0952.16010
[8] Chen, H.: Regular rings, idempotents and products of one-sided units. Comm. Algebra 34 (2006), 737-741. DOI 10.1080/00927870500388026 | MR 2211952 | Zbl 1100.16009
[9] Chen, H., Li, F.: Exchange rings satisfying related comparability. Collect. Math. 53 (2002), 157-164. MR 1913515
[10] Khurana, D., Lam, T. Y.: Clean matrices and unit-regular matrices. J. Algebra 280 (2004), 683-698. DOI 10.1016/j.jalgebra.2004.04.019 | MR 2090058 | Zbl 1067.16050
[11] Lam, T. Y.: A crash course on stable range, cancellation, substitution and exchange. J. Algebra Appl. 3 (2004), 301-343. DOI 10.1142/S0219498804000897 | MR 2096452 | Zbl 1072.16013
[12] Lu, D., Li, Q., Tong, W.: Comparability, stability, and completions of ideals. Comm. Algebra 32 (2004), 2617-2634. DOI 10.1081/AGB-120037403 | MR 2099921 | Zbl 1074.16007
[13] Nicholson, W. K., Zhou, Y.: Clean rings: A survey, Advances in Ring Theory. Proceedings of the 4th China-Japan-Korea International Conference (2004), 181-198. MR 2181857
[14] Pardo, E.: Comparability, separativity, and exchange rings. Comm. Algebra 24 (1996), 2915-2929. DOI 10.1080/00927879608825721 | MR 1396864 | Zbl 0859.16001
[15] Wei, J.: Unit-regularity and stable range conditions. Comm. Algebra 33 (2005), 1937-1946. DOI 10.1081/AGB-200063337 | MR 2150852 | Zbl 1093.16003
[16] Tuganbaev, A. A.: Rings Close to Regular. Kluwer Academic Publishers, Dordrecht, Boston, London (2002). MR 1958361 | Zbl 1120.16012
Partner of
EuDML logo