Previous |  Up |  Next

Article

Keywords:
spectrum; self-complementary graph; energy of graphs
Summary:
In this paper equienergetic self-complementary graphs on $p$ vertices for every $p=4k$, $k \geq 2$ and $p=24t+1$, $t \geq 3$ are constructed.
References:
[1] Balakrishnan, R.: A Text Book of Graph Theory. Springer (2000). MR 1743598
[2] Balakrishnan, R.: The energy of a graph. Linear Algebra Appl. 387 (2004), 287-295. DOI 10.1016/j.laa.2004.02.038 | MR 2069280 | Zbl 1041.05046
[3] Coulson, C. A.: Proc. Cambridge Phil. Soc. 36 (1940), 201-203. Zbl 0027.37606
[4] Cvetkovic, D. M., Doob, M., Sachs, H.: Spectra of Graphs-Theory and Applications. Academic Press (1980). MR 0572262
[5] Stevanovi'c, D.: Energy and NEPS of graphs. Linear Multilinear Algebra 53 (2005), 67-74. DOI 10.1080/03081080410001714705 | MR 2114142
[6] Farrugia, A.: Self-complementary graphs and generalisations: A comprehensive reference manual. M. Sc. Thesis, University of Malta (1999).
[7] Gutman, I.: The energy of a graph. Ber. Math. Statist. Sekt. Forschungszenturm Graz 103 (1978), 1-22. MR 0525890 | Zbl 0402.05040
[8] Gutman, I.: The energy of a graph: old and new results. A. Betten, A. Kohnert, R. Laue, A. Wassermann Algebraic Combinatorics and Applications, Springer (2000), 196-211. MR 1851951
[9] Gutman, I.: Topology and stability of conjugated hydrocarbons. The dependence of total $\pi$-electron energy on molecular topology. J. Serb. Chem. Soc. 70 (2005), 441-456. DOI 10.2298/JSC0503441G
[10] Indulal, G., Vijayakumar, A.: On a pair of equienergetic graphs. MATCH Commun. Math. Comput. Chem. 55 (2006), 83-90. MR 2207922 | Zbl 1106.05061
[11] Indulal, G., Vijayakumar, A.: Energies of some non-regular graphs. J. Math. Chem 42 (2007), 377-386. DOI 10.1007/s10910-006-9108-7 | MR 2372217
[12] Ramane, H. S., Gutman, I., Walikar, H. B., Halkarni, S. B.: Another class of equienergetic graphs. Kragujevac. J. Math. 26 (2004), 15-18. MR 2125353 | Zbl 1079.05057
Partner of
EuDML logo