Previous |  Up |  Next

Article

Keywords:
parabolic PDEs; Rothe's method; two-scale convergence; homogenization of periodic structures; homogenization algorithm
Summary:
We consider a quasilinear parabolic problem with time dependent coefficients oscillating rapidly in the space variable. The existence and uniqueness results are proved by using Rothe's method combined with the technique of two-scale convergence. \endgraf Moreover, we derive a concrete homogenization algorithm for giving a unique and computable approximation of the solution.
References:
[1] Allaire, G.: Two-scale convergence and homogenization of periodic structures. School on Homogenization, ICTP, Trieste, September 6-17, 1993.
[2] Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482-1518. DOI 10.1137/0523084 | MR 1185639 | Zbl 0770.35005
[3] Almqvist, A., Essel, E. K., Persson, L.-E., Wall, P.: Homogenization of the unstationary incompressible Reynolds equation. Tribol. Int. 40 (2007), 1344-1350. DOI 10.1016/j.triboint.2007.02.021
[4] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland Amsterdam (1978). MR 0503330 | Zbl 0404.35001
[5] Fučík, S., Kufner, A.: Nonlinear Differential Equations. Elsevier Scientific Publishing Company Amsterdam-Oxford-New York (1980). MR 0558764
[6] Kačur, J.: Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order. Czech. Math. J. 28 (1978), 507-524. MR 0506431
[7] Kačur, J.: Method of Rothe in Evolution Equations. B. G. Teubner Verlagsgesellschaft Leipzig (1985). MR 0834176
[8] Kuliev, K.: Parabolic problems on non-cylindrical domains. The method of Rothe. PhD. Thesis Faculty of Applied Sciences, University of West Bohemia Pilsen (2007).
[9] Kuliev, K., Persson, L.-E.: An extension of Rothe's method to non-cylindrical domains. Appl. Math. 52 (2007), 365-389. DOI 10.1007/s10492-007-0021-6 | MR 2342595 | Zbl 1164.65463
[10] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars Paris (1969), French. MR 0259693 | Zbl 0189.40603
[11] Lions, J.-L., Lukkassen, D., Persson, L.-E., Wall, P.: Reiterated homogenization of monotone operators. C. R. Acad. Sci. Paris 330 (2000), 675-680. DOI 10.1016/S0764-4442(00)00242-1 | MR 1763909 | Zbl 0953.35041
[12] Lions, J.-L., Lukkassen, D., Persson, L.-E., Wall, P.: Reiterated homogenization of nonlinear monotone operators. Chin. Ann. Math., Ser. B 22 (2001), 1-12. DOI 10.1142/S0252959901000024 | MR 1823125 | Zbl 0979.35047
[13] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35-86. MR 1912819 | Zbl 1061.35015
[14] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[15] Pachpatte, B. G.: Inequalities for Differential and Integral Equations. Academic Press San Diego (1998). MR 1487077 | Zbl 1032.26008
[16] Persson, L.-E., Persson, L., Svanstedt, N., Wyller, J.: The Homogenization Method. An Introduction. Studentlitteratur Lund (1993). MR 1250833 | Zbl 0847.73003
[17] Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations. D. Reidel Publishing Company, London, and SNTL, Prague (1982). MR 0689712 | Zbl 0522.65059
[18] Vala, J.: The method of Rothe and two-scale convergence in nonlinear problems. Appl. Math. 48 (2003), 587-606. DOI 10.1023/B:APOM.0000024496.35738.28 | MR 2025966 | Zbl 1099.35047
[19] Wall, P.: Homogenization of Reynolds equation by two-scale convergence. Chin. Ann. Math. Ser. B 28 (2007), 363-374. DOI 10.1007/s11401-005-0166-0 | MR 2339440 | Zbl 1124.35007
Partner of
EuDML logo