Previous |  Up |  Next

Article

Keywords:
active set; bound constraints; large scale problem
Summary:
We employ the active set strategy which was proposed by Facchinei for solving large scale bound constrained optimization problems. As the special structure of the bound constrained problem, a simple rule is used for updating the multipliers. Numerical results show that the active set identification strategy is practical and efficient.
References:
[1] Burke, J. V., Moré, J. J., Toraldo, G.: Convergence properties of trust region methods for linear and convex constraints. Math. Program. 47 (1990), 305-336. DOI 10.1007/BF01580867 | MR 1068268
[2] Chen, L. F., Wang, Y. L., He, G. P.: A feasible active set QP-free method for nonlinear programming. SIAM J. Optim. 17 (2006), 401-429. DOI 10.1137/040605904 | MR 2247744 | Zbl 1165.90640
[3] Dostál, Z.: A proportioning based algorithm with rate of convergence for bound constrained quadratic programming. Numer. Algorithms 34 (2003), 293-302. DOI 10.1023/B:NUMA.0000005347.98806.b2 | MR 2043903
[4] Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints. SIAM J. Optim. 9 (1998), 14-32. DOI 10.1137/S1052623496305882 | MR 1660110 | Zbl 0960.90080
[5] Facchinei, F., Júdice, J., Soares, J.: An active set Newton algorithm for large-scale nonlinear programs with box constraints. SIAM J. Optim. 8 (1998), 158-186. DOI 10.1137/S1052623493253991 | MR 1617441
[6] Facchinei, F., Júdice, J., Soares, J.: Generating box-constrained optimization problems. ACM Trans. Math. Softw. 23 (1997), 443-447. DOI 10.1145/275323.275331
[7] Facchinei, F., Lucidi, S.: Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problems. J. Optimization Theory Appl. 85 (1995), 265-289. DOI 10.1007/BF02192227 | MR 1333788 | Zbl 0830.90125
[8] Facchinei, F., Lucidi, S., Palagi, L.: A truncated Newton algorithm for large scale box constrained optimization. SIAM J. Optim. 12 (2002), 1100-1125. DOI 10.1137/S1052623499359890 | MR 1922511 | Zbl 1035.90103
[9] Liu, D. C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45 (1989), 503-528. DOI 10.1007/BF01589116 | MR 1038245 | Zbl 0696.90048
[10] Moré, J. J., Toraldo, G.: On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1 (1991), 93-113. DOI 10.1137/0801008 | MR 1094793
[11] Ni, Q., Yuan, Y.: A subspace limited memory quasi-Newton algorithm for large-scale nonlinear bound constrained optimization. Math. Comput. 66 (1997), 1509-1520. DOI 10.1090/S0025-5718-97-00866-1 | MR 1422793 | Zbl 0886.65065
[12] Pillo, G. Di, Facchinei, F., Grippo, L.: An $RQP$ algorithm using a differentiable exact penalty function for inequality constrained problems. Math. Program. 55 (1992), 49-68. DOI 10.1007/BF01581190 | MR 1163293 | Zbl 0767.90060
[13] Schittkowski, K.: More test examples for nonlinear programming codes. Lecture Notes in Economics and Mathematical Systems, Vol. 282 Springer Berlin (1987). MR 1117683 | Zbl 0658.90060
[14] Sun, L., He, G. P., Wang, Y. L., Fang, L.: An active set quasi-Newton method with projected search for bound constrained minimization. Comput. Math. Appl. 58 (2009), 161-170. DOI 10.1016/j.camwa.2009.03.085 | MR 2535978 | Zbl 1189.90160
[15] Sun, L., He, G. P., Wang, Y. L., Zhou, C. Y.: An accurate active set Newton method for large scale bound constrained optimization. Appl. Math Accepted.
[16] Wang, Y. L., Chen, L. F., He, G. P.: Sequential systems of linear equations method for general constrained optimization without strict complementarity. J. Comput. Appl. Math. 182 (2005), 447-471. DOI 10.1016/j.cam.2004.12.023 | MR 2147879 | Zbl 1078.65055
[17] Xiao, Y. H., Wei, Z. X.: A new subspace limited memory BFGS algorithm for large-scale bound constrained optimization. Appl. Math. Comput. 185 (2007), 350-359. DOI 10.1016/j.amc.2006.06.119 | MR 2298454 | Zbl 1114.65069
[18] Zhou, C. Y., He, G. P., Wang, Y. L.: A new constraints identification technique-based QP-free algorithm for the solution of inequality constrained minimization problems. J. Comput. Math. 24 (2006), 591-608. MR 2256309 | Zbl 1112.65060
Partner of
EuDML logo