[1] G. Dziuk, E. Kuwert, and R. Schätzle:
Evolution of elastic curves in $\mathbb R^n$: existence and computation. SIAM J. Math. Anal. 33 (2002), 5, 1228–1245.
MR 1897710
[2] T. Kurihara and T. Nagasawa:
On the gradient flow for a shape optimization problem of plane curves as a singular limit. Saitama J. Math. 24 (2006/2007), 43–75.
MR 2396572
[3] K. Mikula and D. Ševčovič:
Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Appl. Math. 61 (2001), 5, 1473–1501.
MR 1824511
[4] K. Mikula and D. Ševčovič:
A direct method for solving an anisotropic mean curvature flow of plane curves with an external force. Math. Methods Appl. Sci. 27 (2004), 13, 1545–1565.
MR 2077443
[5] K. Mikula and D. Ševčovič:
Computational and qualitative aspects of evolution of curves driven by curvature and external force. Comput. Vis. Sci. 6 (2004), 4, 211–225.
MR 2071441
[6] K. Mikula and D. Ševčovič:
Evolution of curves on a surface driven by the geodesic curvature and external force. Appl. Anal. 85 (2006), 4, 345–362.
MR 2196674
[7] Y. Miyamoto: Reformulation of Local-Constraint-Gradient Flow for Bending Energy of Plane Curves Applying the Fredholm Alternative (in Japanese). Master Thesis, Saitama University, 2009.
[8] S. Okabe:
The motion of elastic planar closed curve under the area-preserving condition. Indiana Univ. Math. J. 56 (2007), 4, 1871–1912.
MR 2354702
[9] F. Suto: On the Global Existence for Local/Total-Constraint-Gradient Flows for the Bending Energy of Plane Curves (in Japanese). Master Thesis, Saitama University, 2009.