Previous |  Up |  Next

Article

Keywords:
reaction-diffusion system; interaction of fronts; phase transition model
Summary:
Hildebrand et al. (1999) proposed an adsorbate-induced phase transition model. For this model, Takei et al. (2005) found several stationary and evolutionary patterns by numerical simulations. Due to bistability of the system, there appears a phase separation phenomenon and an interface separating these phases. In this paper, we introduce the equation describing the motion of two interfaces in $\mathbb{R}^2$ and discuss an application. Moreover, we prove the existence of the traveling front solution which approximates the shape of the solution in the neighborhood of the interface.
References:
[1] S.-I. Ei: The motion of weakly interacting pulses in reaction-diffusion systems. J. Dynam. Differential Equations 14 (2002), 85–137. MR 1878646 | Zbl 1007.35039
[2] S.-I. Ei and T. Ohta: Equation of motion for interacting pulse. Phys. Rev. E 50 (1994), 4672–4678.
[3] M. Eiswirth, M. Bär, and H. H. Rotermund: Spatiotemporal selforganization on isothermal catalysts. Physica D 84 (1995), 40–57.
[4] M. Funaki, M. Mimura, and T. Tsujikawa: Travelling front solutions arising in the chemotaxis-growth model. Interfaces and Free Boundaries 8 (2006), 223–245. MR 2256842
[5] M. Hildebrand: Selbstorganisierte nanostrukturen in katakyschen oberflächenreaktionen. Ph.D. Dissertation, Mathematisch–Naturwissenschaftlichen Fakultät I, Humboldt–Universität, Berlin 1999.
[6] M. Hildebrand, M. Ipsen, H. S. Mikhailov, and G. Ertl: Localized nonequailibrium nanostructures in surface chemical reactions. New J. Phys. 5 (2003), 61.1–61.28.
[7] M. Hildebrand, M. Kuperman, H. Wio, and A. S. Mikhailov: Self-organized chemical nanoscale microreactors. Phys. Rev. Lett. 83 (1999), 1475–1478.
[8] K. Kuto and T. Tsujikawa: Pattern formation for adsorbate-induced phase transition model. RIMS Kokyuroku Bessatsu B3 (2007), 43–58. MR 2408125
[9] A. v. Oertzen, H. H. Rotermund, A. S. Mikhailov, and G. Ertl: Standing wave patterns in the CO oxidation reaction on a Pt(110) surface: experiments and modeling. J. Phys. Chem. B 104 (2000), 3155–3178.
[10] Y. Takei, T. Tsujikawa, and A. Yagi: Numerical computations and pattern formation for adsorbate-induced phase transition model. Sci. Math. Japon. 61 (2005), 525–534. MR 2140113
[11] Y. Takei, M. Efendiev, T. Tsujikawa, and A. Yagi: Exponential attractor for an adsorbate-induced phase transition model in non smooth domains. Osaka J. Math. 43 (2006), 215–237. MR 2222411
[12] T. Tsujikawa: Singular limit analysis of an adsorbate-induced phase transition model. Preprint.
[13] T. Tsujikawa and A. Yagi: Exponential attractor for an adsorbate-induced phase transition model. Kyushu J. Math. 56 (2002), 313–336. MR 1934129
Partner of
EuDML logo