Previous |  Up |  Next

Article

Keywords:
finite element method; convection-diffusion equation; stability; inf-sup condition; stabilization; SUPG method; local projection method; error estimates
Summary:
We consider the local projection finite element method for the discretization of a scalar convection-diffusion equation with a divergence-free convection field. We introduce a new fluctuation operator which is defined using an orthogonal $L^2$ projection with respect to a weighted $L^2$ inner product. We prove that the bilinear form corresponding to the discrete problem satisfies an inf-sup condition with respect to the SUPG norm and derive an error estimate for the discrete solution.
References:
[1] R. Becker and M. Braack: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001), 173–199. MR 1890352
[2] R. Becker and M. Braack: A two-level stabilization scheme for the Navier–Stokes equations. In: Numerical Mathematics and Advanced Applications (M. Feistauer et al., eds.), Springer–Verlag, Berlin 2004, pp. 123–130. MR 2121360
[3] M. Braack and E. Burman: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43 (2006), 2544–2566. MR 2206447
[4] A. N. Brooks and T. J. R. Hughes: Streamline upwind / Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1982), 199–259. MR 0679322
[5] P. G. Ciarlet: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, Vol. 2 – Finite Element Methods (pt. 1) (P. G. Ciarlet and J. L. Lions, eds.), North-Holland, Amsterdam 1991, pp. 17–351. MR 1115237 | Zbl 0875.65086
[6] P. Knobloch: On the application of local projection methods to convection-diffusion-reaction problems. In: BAIL 2008 – Boundary and Interior Layers (Lecture Notes Comput. Sci. Engrg. 69, A. F. Hegarty, N. Kopteva, E. O’Riordan, and M. Stynes, eds.), Springer–Verlag, Berlin 2009, pp. 183–194. MR 2581489 | Zbl 1180.35051
[7] P. Knobloch and L. Tobiska: On the stability of finite element discretizations of convection-diffusion-reaction equations. IMA J. Numer. Anal., Advance Access published on August 27, 2009; doi:10.1093/imanum/drp020
[8] G. Matthies, P. Skrzypacz, and L. Tobiska: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. M2AN Math. Model. Numer. Anal. 41 (2007), 713–742. MR 2362912
[9] H.-G. Roos, M. Stynes, and L. Tobiska: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems. Second edition. Springer–Verlag, Berlin 2008. MR 2454024
Partner of
EuDML logo