[1] A. Arapostathis, V. K. Borkar, E. Fernández-Gaucherand, M. K. Gosh, and S. I. Marcus:
Discrete-time controlled Markov processes with average cost criteria: a survey. SIAM J. Control Optim. 31 (1993), 282–334.
MR 1205981
[2] A. Brau-Rojas, R. Cavazos-Cadena, and E. Fernández-Gaucherand: Controlled Markov chains with a risk-sensitive criteria: some counterexamples In: Proc. 37th IEEE Conference on Decision and Control, Tempa 1998, pp. 1853–1858.
[3] R. Cavazos–Cadena and E. Fernández-Gaucherand:
Controlled Markov chains with risk-sensitive criteria: average cost, optimality equations and optimal solutions. Math. Methods Oper. Res. 43 (1999), 121–139.
MR 1687362
[4] R. Cavazos–Cadena and E. Fernández–Gaucherand: Risk-sensitive control in communicating average Markov decision chains. In: Modelling Uncertainty: An examination of Stochastic Theory, Methods and Applications (M. Dror, P. L’Ecuyer, and F. Szidarovsky, eds.), Kluwer, Boston 2002, pp. 525–544.
[5] R. Cavazos–Cadena and D. Hernández-Hernández:
Solution to the risk-sensitive average cost optimality equation in communicating Markov decision chains with finite state space: An alternative approach. Math. Methods Oper. Res. 56 (2003), 473–479.
MR 1953028
[6] R. Cavazos–Cadena:
Solution to the risk-sensitive average cost optimality equation in a class of Markov decision processes with finite state space. Math. Methods Oper. Res. 57 (2003), 263–285.
MR 1973378
[7] R. Cavazos–Cadena and D. Hernández-Hernández:
A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains. Ann. Appl. Probab. 15 2005, 175–212.
MR 2115041
[8] R. Cavazos–Cadena and D. Hernández-Hernández:
Necessary and sufficient conditions for a solution to the risk-sensitive Poisson equation on a finite state space. Systems Control Lett. 58 (2009), 254–258.
MR 2510639
[9] G. B. Di Masi and L. Stettner:
Risk-sensitive control of discrete time Markov processes with infinite horizon. SIAM J. Control Optim. 38 (1999), 61–78.
MR 1740607
[10] W. H. Fleming and W. M. McEneany:
Risk-sensitive control on an infinite horizon. SIAM J. Control Optim. 33 (1995), 1881–1915.
MR 1358100
[11] D. Hernández-Hernández and S. I. Marcus:
Risk-sensitive control of Markov processes in countable state space. Systems Control Lett. 29 (1996), 147–155.
MR 1422212
[12]
O. Hernández-Lerma: Adaptive Markov Control Processes Springer, New York 1988.
MR 0995463
[13] R. A. Howard and J. E. Matheson:
Risk-sensitive Markov decision processes. Management Sci. 18 (1972), 356–369.
MR 0292497
[14] D. H. Jacobson:
Optimal stochastic linear systems with exponential performance criteria and their relation to stochastic differential games. IEEE Trans. Automat. Control 18 (1973), 124–131.
MR 0441523
[15] S. C. Jaquette:
Markov decison processes with a new optimality criterion: discrete time. Ann. Statist. 1 (1973), 496–505.
MR 0378839
[16] S. C. Jaquette:
A utility criterion for Markov decision processes. Management Sci. 23 (1976), 43–49.
MR 0439037 |
Zbl 0337.90053
[17] A. Jaśkiewicz:
Average optimality for risk sensitive control with general state space. Ann. Appl. Probab. 17 (2007), 654–675.
MR 2308338
[18] M. Loève:
Probability Theory I. Springer, New York 1980.
MR 0651017
[20] E. Seneta: Nonnegative Matrices. Springer, New York 1980.
[21] K. Sladký:
Growth rates and average optimality in risk-sensitive Markov decision chains. Kybernetika 44 (2008), 205–226.
MR 2428220
[22] K. Sladký and R. Montes-de-Oca: Risk-sensitive average optimality in Markov decision chains Raul. In: Oper. Res. Proc. 2007 (Selected Papers of the Internat. Conference on Operations Research 2007, Saarbruecken, J. Kalcsics and S. Nickel, eds.), Springer-Verlag, Berlin – Heidelberg 2008, pp. 69–74.