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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , N U MBE R 5 , P AG E S 7 1 6 – 7 3 6

THE RISK–SENSITIVE POISSON EQUATION
FOR A COMMUNICATING MARKOV CHAIN
ON A DENUMERABLE STATE SPACE

Rolando Cavazos–Cadena

Dedicated to Professor O. Hernández-Lerma, on the occasion of his sixtieth birthday.

This work concerns a discrete-time Markov chain with time-invariant transition mecha-
nism and denumerable state space, which is endowed with a nonnegative cost function with
finite support. The performance of the chain is measured by the (long-run) risk-sensitive
average cost and, assuming that the state space is communicating, the existence of a so-
lution to the risk-sensitive Poisson equation is established, a result that holds even for
transient chains. Also, a sufficient criterion ensuring that the functional part of a solution
is uniquely determined up to an additive constant is provided, and an example is given to
show that the uniqueness result may fail when that criterion is not satisfied.

Keywords: possibly transient Markov chains, discounted approach, first return time,
uniqueness of solutions to the multiplicative Poisson equation
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1. INTRODUCTION

This note concerns a discrete-time Markov chain {Xn} evolving on a denumerable
state space S in accordance with a time-invariant transition matrix P = [px y]. The
system is endowed with a cost function C : S → [0, ∞), so that a cost C(Xt) is
incurred at each time t = 1, 2, 3, . . . and, assuming for the sake of simplicity that the
observer of the chain has unitary risk aversion coefficient1, the overall performance
of the system when the initial state is X0 = x is measured by the (long-run) risk-
sensitive average cost JC(x), which is given by

JC(x) = lim sup
n→∞

1

n
JC,n(x) (1.1)

where, letting Ex[·] be the expectation operator given X0 = x,

JC,n(x) = log
(
Ex

[
e

Pn−1
t=0 C(Xt)

])
(1.2)

1it is not difficult to see that the same analysis can be performed for any positive value of the
risk aversion coefficient
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is the risk-sensitive (expected) total cost incurred before time n. The characteri-
zation of the average cost function JC(·) is usually based on the following Poisson
equation associated with C:

eg+h(x) = eC(x)
∑

y∈S

px,yeh(y), x ∈ S, (1.3)

where g is a real number and h(·) is a real-valued function defined on S. Under
appropriate conditions on the function h(·), which will be precisely stated in the
following section, if (1.3) holds then JC(·) = g; in particular, this occurs when h is
a bounded function ([11, 13] and [21]).

The main objective of the paper can be stated as follows:

To establish the existence of a pair (g, h(·)) satisfying the Poisson equation (1.3) as
well as the suitable verification criterion to ensure that JC(·) = g.

This problem is analyzed under the following two structural conditions (a) and (b):

(a) the cost function C has finite support, and

(b) the state space is communicating, in that if x, y ∈ S are arbitrary, then with
positive probability the system visits state y when the initial state is x; notice
that, under this requirement, {Xn} may be a transient chain.

Within this framework, the main results of this work can be described as follows:

(i) It is proved that the Poisson equation (1.3) admits a solution satisfying the
verification criterion to ensure that JC(·) = g; see Theorem 2.1 below.

(ii) For a transient chain {Xn} it shown that JC(·) may be positive, a fact that
signals a deep difference between the risk-sensitive and risk-neutral average
criteria since, for a transient system, this latter index is always null when the
cost function C(·) has finite support.

(iii) A sufficient condition is formulated so that if (g, h(·)) satisfies (1.3) as well as
the verification condition in Lemma 2.1 below, then the function h is uniquely
determined up to an additive constant.

The study of stochastic systems endowed with the risk-sensitive criterion (1.1) can
be traced back, at least, to the seminal papers by Howard and Matheson [13], Ja-
cobson [14] and Jaquette [15, 16]. Particularly, in [13] controlled Markov chains
with finite state and action spaces were considered and, assuming that the system
is communicating, the existence of a pair (g, h(·)) satisfying an optimality equation
similar to (1.3) was established. The approach in that paper is based on the Perron–
Frobenius theory of nonnegative matrices, and it follows that when (1.3) holds, then
eg is the largest eigenvalue of the matrix [eC(x)px y] and (eh(x), x ∈ S) is a corre-
sponding eigenvector, so that h(·) is unique up to an additive constant (Seneta [20]).
Extending these ideas, the value iteration approximation method and the policy im-
provement algorithm were studied in Sladký and Montes-de-Oca [22]) and Sladký
[21]). A different approach to the existence of solutions for the Poisson equation on
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a finite state space was presented in Cavazos-Cadena and Fernández-Gaucherand
[4], were the analysis is based on the risk-sensitive total cost criterion. Recently,
there has been an intensive work on (controlled) stochastic system endowed with
the risk-sensitive average criterion; see, for instance, Flemming and McEneany [10],
Di Masi and Stettner [9], Cavazos-Cadena and Hernández-Hernández [5], Jaśkiewicz
[17] and the references there in. On the other hand, a pair (g, h(·)) satisfying (1.3)
may not exist even under strong recurrency conditions, as the Doeblin condition
(Cavazos-Cadena and Fernández-Gaucherand [8]), a fact that establishes a deep dif-
ference with the risk-neutral average criterion, which is constant and is determined
via a risk-neutral Poisson equation under diverse variants of the Doeblin condition
(Arapostathis et al. [1]); for other important differences between the risk-sensitive
and risk-neutral indexes see Brau-Rojas et al. [2]. Finally, necessary and sufficient
criteria for the solvability of the above Poisson equation when the state space is
finite are given in Cavazos-Cadena and Hernández-Hernández [7] and in Sladký [21],
dealing with the uncontrolled and controlled cases, respectively.

The approach of this work relies on a family {Tα | α ∈ (0, 1)} of contractive (dis-
counted) operators whose fixed points {Vα} allow to obtain approximate solutions
to (1.3); this classical idea has been widely used to study (controlled) Markov chains
with the risk-neutral average criterion (Hernández-Lerma [12], Araposthatis et al.
[1], Puterman[19]), and for the risk-sensitive criterion (1.1) similar ideas have been
recently employed, for instance, in Cavazos-Cadena and Hernández-Hernández [5]
and Cavazos-Cadena [6] to analyze models with finite state space, and in Jaśkiewicz
[17] to study systems on Borel spaces.

The organization of the paper is as follows: First, in Section 2 the necessary and
sufficient criterion to ensure that if (1.3) holds then g is the average cost at each
state x is formally established in Lemma 2.1, and the main result on the solvability
of the Poisson equation is stated as Theorem 2.1. Next, in Section 3 the family
{Tα} of contractive operators on the space of bounded functions on S is introduced,
the existence and location of maximizers of the corresponding fixed points Vα are
analyzed, and the results in this direction are used in Section 4 to prove the main
theorem. Then, in Section 5 the case of a transient Markov chain is studied and
it is shown that, under the assumptions in the paper, the average cost JC(·) may
be positive, establishing an interesting contrast with the risk-neutral average index.
Finally, in Section 6 an explicit example is given to shown that, if (g, h(·)) is as
in (1.3) and the criterion in Lemma 2.1 is satisfied then, the function h(·) is not
generally determined in a unique way up to an additive constant; after this example,
a new stochastic matrix Q on the state space S is introduced, and a criterion to
ensure the uniqueness of h(·) modulo an additive constant is given in terms of the
matrix Q.

Notation. Throughout the remainder the state space S is endowed with the discrete
topology and B(S∞) stands for the Borel σ-field of the Cartesian product S×S×S×
· · · =: S∞; the distribution of the Markov chain {Xn} when X0 = x is denoted by
Px[·] and, without explicit reference, all relations involving conditional expectations
are assumed to hold almost surely with respect to the underlying measure. On the
other hand, B(S) denotes the space of all real-valued and bounded functions defined
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on S, that is, D : S → R belongs to S if and only if ‖D‖ < ∞, where

‖D‖ := sup
x∈S

|D(x)|

is the supremum norm of D(·). Finally, for an event A the corresponding indicator
(Bernoulli) variable corresponding to A is denoted by I[A].

2. VERIFICATION CRITERION AND MAIN RESULT

In this section the result concerning the existence of solutions of the Poisson equation
(1.3) is stated as Theorem 2.1 below. To begin with, it is convenient to discuss the
verification criterion ensuring that, if (1.3) holds, then g is the average cost at each
state x. Given x ∈ S and n = 1, 2, 3, . . ., define the probability measure νC,x,n on
B(S∞) as follows: For each A ∈ B(S∞),

νC,x,n(A) =
1

Ex

[
e

Pn−1
t=0 C(Xt)

]Ex

[
e

Pn−1
t=0 C(Xt)I[(X1, X2, X3, . . .) ∈ A]

]
. (2.1)

Now, let EνC,x,n
[·] be the expectation operator associated with this measure, and

notice if (1.3) holds then an induction argument yields that

eng+h(x) = Ex

[
e

Pn−1
t=0 C(Xt)+h(Xn)

]

= Ex

[
e

Pn−1
t=0 C(Xt)

]
EνC,x,n

[
eh(Xn)

]

= eJC,n(x)EνC,x,n

[
eh(Xn)

]
, x ∈ S, n = 1, 2, 3, . . . , (2.2)

where (1.2) was used in the last step. Thus, the equality

g +
h(x)

n
=

1

n
JC,n(x) +

1

n
log

(
EνC,x,n

[
eh(Xn)

])

always holds, a fact that combined with the specification of JC(·) in (1.1) immedi-
ately leads to the following conclusion.

Lemma 2.1. [Verification] Assume that g ∈ R and h : S → R are such that (1.3)
holds. In this case the equality g = JC(·) is valid if and only if

lim inf
n→∞

(
EνC,x,n

[
eh(Xn)

])1/n

= 1, x ∈ S, (2.3)

where νC,x,n is the measure defied in (2.1).

For the sake of future reference, the structural assumptions described in Section 1
are formally stated below.

Assumption 2.1. The transition matrix P = [px,y]x y∈S is communicating, i. e., for
each x, y ∈ S there exists a positive integer n = n(x, y) such that Px[Xn = y] > 0.
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Assumption 2.2. (i) The cost function C is nonnegative, and

(ii) C has finite support, that is, there exists a finite set K ⊂ S such that

C(x) = 0, x ∈ S \ K. (2.4)

The following is the main result of this work.

Theorem 2.1. Under Assumptions 2.1 and 2.2, there exist g ∈ R and h : S →
(−∞, 0] such that the following assertions (i) and (ii) are valid:

(i) The Poisson equation (1.3) as well as the criterion (2.3) are satisfied, so that
g = JC(·);

Moreover,

(ii) The limit superior in (1.1) can be replaced by limit, that is, for each x ∈ S,

g = lim
n→∞

1

n
JC,n(x),

and then

lim
n→∞

(
EνC,x,n

[
eh(Xn)

])1/n

= 1.

The proof of this result will be presented after the preliminaries established in
the following section.

3. DISCOUNTED APPROACH

The technical tools that will be used in the proof of Theorem 2.1 are collected in
this section. For each α ∈ (0, 1) define the operator Tα : B(S) → B(S) by

Tα[W ](x) : = log
(
Ex

[
eC(X0)+αW (X1)

])
, W ∈ B(S), x ∈ S. (3.1)

In this case it is not difficult to see that Tα satisfies the following monotonicity and
contractive properties (Cavazos-Cadena [6]): For each W,V ∈ B(S),

Tα[W ] ≥ Tα[V ] if W ≥ V , (3.2)

and

‖Tα[W ] − Tα[V ]‖ ≤ α‖W − V ‖. (3.3)

Since B(S) endowed with the supremum norm is a Banach space, the contraction
property yields that there exists a unique function Vα ∈ B(S) satisfying Tα[Vα] = Vα,
that is,

eVα(x) = Ex

[
eC(X0)+αVα(X1)

]
= eC(x)

∑

y∈S

px yeαVα(y), x ∈ S. (3.4)
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Moreover, setting Tn
α [W ] = Tα(Tn−1

α [W ]) for n ≥ 2, it is not difficult to see that
(3.3) yields that ‖Vα − Tn

α [0]‖ = ‖Tn
α [Vα] − Tn

α [0]‖ ≤ αn‖Vα‖ → 0 as n → ∞; since
Tα[0] = C ≥ 0 (see (3.1) and Assumption 2.2), from the monotonicity property (3.2)
it follows that Tn

α [0] ≥ 0 for every n, so that

0 ≤ Vα. (3.5)

Observe now that (3.3) and the equalities Tα[Vα] = Vα and Tα[0] = C together yield
that

‖Vα‖ − ‖C‖ ≤ ‖Vα − C‖
≤ ‖Tα[Vα] − Tα[0]‖ ≤ α‖Vα − 0‖ = α‖Vα‖

and then

‖(1 − α)Vα‖ ≤ ‖C‖. (3.6)

In the remainder of the section the existence and location of a maximizer xα of the
function Vα, as well as the limit behavior of Vα(·) − Vα(xα), are analyzed. The
argument involves the simple properties in (3.5) and (3.6), and uses the idea of first
return time to a subset of S, which is now introduced.

Definition 3.1. If F ⊂ S, the first return time to set F is defined by

TF : = min{n ≥ 1 | Xn ∈ F}

where, by convention, the minimum of the empty set is ∞; if F = {z} ⊂ S is a
singleton,

Tz ≡ T{z}.

The maximization of the function Vα(·) is studied in the following lemma.

Lemma 3.1. Suppose that Assumptions 2.1 and 2.2 hold, and let the finite set
K ⊂ S be such that (2.4) holds. In this case, for each α ∈ (0, 1), the function
Vα ∈ B(S) in (3.4) attains its maximum at a point in K, that is, there exists a state
xα satisfying

xα ∈ K and Vα(x) ≤ Vα(xα), x ∈ S. (3.7)

P r o o f . Given α ∈ (0, 1) it will be shown that

For each n = 1, 2, 3, . . . and x ∈ S \ K

eVα(x) ≤
n∑

r=1

Ex

[
eαVα(XTK

)I[TK = r]
]

+ Ex

[
eαVα(Xn)I[TK > n]

]
. (3.8)

Assuming that this relation holds, the conclusion can be achieved following the steps
(i) – (iv) below:
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(i) Since K is finite, there exists a state xα such that

xα ∈ K and Vα(xα) ≥ Vα(x) for all x ∈ K. (3.9)

(ii) Observing that XTK
∈ K when TK < ∞ (see Definition 3.1), from (3.8) and

step (i) above it follows that, for every positive integer n,

eVα(x) ≤ eαVα(xα)Px[TK ≤ n] + Ex

[
eαVα(Xn)I[TK > n]

]
, x ∈ S \ K. (3.10)

Now set

σ : = sup
x∈S\K

Vα(x). (3.11)

(iii) Since σ ≥ 0, by (3.5), from the inclusion α ∈ (0, 1) it follows that there exists
a point x∗ ∈ S \ K such that Vα(x∗) ≥ ασ. Also, observing that Xn ∈ S \ K
on the event [TK > n], inequality (3.10) with x∗ instead of x yields that, for
every positive integer n, eασ ≤ eαVα(xα)Px∗ [TK ≤ n] + eασPx∗ [TK > n], that
is,

eασPx∗ [TK ≤ n] ≤ eαVα(xα)Px∗ [TK ≤ n].

(iv) By Assumption 2.1 there exists an integer n∗ > 0 such that Px∗ [Xn∗ = xα] > 0.
Since xα ∈ K it follows that Px∗ [TK ≤ n∗] ≥ Px∗ [Xn∗ ∈ K] ≥ Px∗ [Xn∗ =
xα] > 0, and then the above display with n∗ instead of n yields that eασ ≤
eαVα(xα), that is,

σ ≤ Vα(xα).

Combining this inequality with (3.9) and (3.11) it follows that xα satisfies the desired
conclusion (3.7). To complete the argument, (3.8) will be proved by induction. Given
x ∈ S \ K, so that C(x) = 0, by (2.4), from (3.4) and Definition 3.1 it follows that

eVα(x) = Ex

[
eαVα(X1)

]

= Ex

[
eαVα(XTK

)I[TK = 1]
]

+ Ex

[
eαVα(X1)I[TK > 1]

]

establishing the case n = 1 of (3.8). Assume now that (3.8) holds for n = m. Using
that Vα(·) ≥ 0 and α ∈ (0, 1), equation (3.4) implies that

eαVα(Xm)I[TK > m] ≤ eVα(Xm)I[TK > m]

= I[TK > m]eC(Xm)
∑

y∈S

pXm yeαVα(y)

= I[TK > m]eC(Xm)Ex

[
eαVα(Xm+1)

∣∣∣ X0, . . . , Xm

]

= I[TK > m]Ex

[
eαVα(Xm+1)

∣∣∣ X0, . . . , Xm

]

= Ex

[
eαVα(Xm+1)I[TK > m]

∣∣∣ X0, . . . , Xm

]
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where the second equality is due to the Markov property, the third one used that on
the event [TK > m] the inclusion Xm ∈ S \ K holds, so that C(Xm) = 0, and the
equality I[TK > m] = I[Xi ∈ S \ K, i = 1, 2, . . . ,m] was used to move the indicator
function into the conditional expectation in the last step. Therefore,

Ex

[
eαVα(Xm)I[TK > m]

]

≤ Ex

[
eαVα(Xm+1)I[TK > m]

]

= Ex

[
eαVα(Xm+1)I[TK = m + 1]

]
+ Ex

[
eαVα(Xm+1)I[TK > m + 1]

]
,

and combining this relation with the case n = m of (3.8), which is valid by the
induction hypothesis, it follows that (3.8) is also satisfied for n = m + 1, completing
the proof. ¤

Before going any further it is convenient to introduce the following notation.

Definition 3.2. Suppose that Assumptions 2.1 and 2.2 hold, and for each α ∈ (0, 1)
let xα ∈ K be a maximizer of Vα(·). In this case, gα ∈ R and hα : S → R are given
by

gα : = (1 − α)Vα(xα), hα(x) : = Vα(x) − Vα(xα), x ∈ S.

Notice that (3.5), (3.6) and (3.7) together yield

0 ≤ gα ≤ ‖C‖, − ‖C‖
1 − α

≤ hα(·) ≤ 0, α ∈ (0, 1), (3.12)

whereas multiplying both sides of (3.4) by e−αVα(xα) direct rearrangements lead to

egα+hα(x) = eC(x)
∑

y∈S

px yeαhα(y), x ∈ S. (3.13)

Lemma 3.2. Suppose that Assumptions 2.1 and 2.2 hold. In this case

lim inf
α↗1

hα(x) > −∞, x ∈ S.

P r o o f . The argument is by contradiction. Suppose that

lim inf
α↗1

hα(x0) = −∞ for some x0 ∈ S. (3.14)

In this case there exists a sequence {αk} ⊂ (0, 1) such that

αk ↗ 1 and lim inf
k→∞

hαk
(x0) = −∞. (3.15)

Since the set K is finite and the inclusion xαk
∈ K always holds, taking a subsequence

if necessary it can be assumed that

xαk
= x∗ ∈ K, k = 1, 2, 3, . . . , (3.16)
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so that
hαk

(x∗) = 0, k = 1, 2, 3, . . . ; (3.17)

see Definition 3.2. Now, define the set L ⊂ S by

L : = {x ∈ S | lim inf
k→∞

hαk
(x) = −∞},

and notice that x0 ∈ L, by (3.15). It will be shown that L is P -closed, i. e.,

x ∈ L and px y > 0 =⇒ y ∈ L. (3.18)

To establish this fact notice that the first relation in (3.12) and (3.13) together yield
that the inequalities e2‖C‖+hαk

(x) ≥ ∑
w∈S px weαkhαk

(w) ≥ px yeαkhαk
(y) always

hold and, recalling that αk ↗ 1, it follows that for every x, y ∈ S

e2‖C‖+lim infk→∞ hαk
(x) ≥ px yelim infk→∞ hαk

(y).

Now let x ∈ L be arbitrary. In this case the left-hand side of this inequality is null and
it follows that px yelim infk→∞ hαk

(y) = 0, so that px y > 0 leads to elim infk→∞ hαk
(y) =0,

that is, lim infk→∞ hαk
(y) = −∞, and then y ∈ L. This establishes (3.18) and an

induction argument allows to obtain

x ∈ L and Px[Xn = y] > 0 for some integer n =⇒ y ∈ L.

Recall now that x0 ∈ L and let x∗ ∈ K be as in (3.16). By Assumption 2.1, there
exists n∗ such that Px0

[Xn∗ = x∗] > 0 and then the above display yields that
x∗ ∈ L, i. e., lim infk→∞ hαk

(x∗) = −∞, contradicting (3.17). Thus, the starting
point in this argument, namely, assertion (3.14), does not hold and it follows that
lim infα↗1 hα(x) > −∞ for every x ∈ S. ¤

4. PROOF OF THE MAIN RESULT

In the section the above preliminary results will be used to establish the main con-
clusion of this note, namely, Theorem 2.1.

P r o o f . Let {αk} ⊂ (0, 1) be a fixed sequence increasing to 1, and let gαk
and

hαk
(·) be as in Definition 3.2. Combining (3.12) with Lemma 3.2 it follows that

there exists a finite function L : S → (−∞, 0] such that

(gαk
; hαk

(x), x ∈ S) ∈ [0, ‖C‖] ×
∏

x∈S

[L(x), 0];

since the right-hand side of this inclusion is a compact metric space, after taking a
subsequence if necessary it can be assumed that the following limits exist:

lim
k→∞

gαk
=: g ∈ [0, ‖C‖], lim

k→∞
hαk

(x) =: h(x) ∈ [L(x), 0], x ∈ S. (4.1)

It will be shown that the desired conclusions are satisfied by g and h(·) in this
display.
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(i) Since αk ↗ 1 and hαk
(·) ≤ 0, (4.1) and the bounded convergence theorem

together yield that

lim
k→∞

∑

y∈S

px yeαkhαk
(y) =

∑

y∈S

px yeh(y).

Replacing α by αk in (3.13) and taking limit as k goes to ∞ in both sides
of the resulting equality, the above display and (4.1) together imply that the
Poisson equation (1.3) holds.

(ii) Let α ∈ (0, 1) be arbitrary but fixed, and recall that the (bounded) function
hα(·) is non positive, so that αhα(·) ≥ hα(·), an inequality that combined with
(3.13) yields that, for each state x ∈ S, egα+hα(x) ≥ eC(x)

∑
y∈S px yehα(y) =

Ex

[
eC(X0)+hα(X1)

]
. From this point, an induction argument using the Markov

property allows to obtain that, for each n = 1, 2, 3, . . . and x ∈ S

engα+hα(x) ≥ Ex

[
e

Pn−1
t=0 C(Xt)+hα(Xn)

]

≥ Ex

[
e

Pn−1
t=0 C(Xt)

]
e−‖hα‖

≥ eJC,n(x)−‖hα‖;

see (1.2). It follows that gα + (hα(x) + ‖hα‖)/n ≥ JC,n(x)/n so that, for each
sate x,

gα ≥ lim sup
n→∞

1

n
JC,n(x).

Since this inequality holds for each α ∈ (0, 1), via the first convergence in (4.1) it
follows that

g ≥ lim sup
n→∞

1

n
JC,n(x), x ∈ S. (4.2)

On the other hand, since the Poisson equation (1.3) holds, an induction argument
yields that for every integer n > 0 and x ∈ S

eng+h(x) = Ex

[
e

Pn−1
t=0 C(Xt)eh(Xn)

]
≤ Ex

[
e

Pn−1
t=0 C(Xt)

]
= eJC,n(x),

where the inequality is due to the relation h(·) ≤ 0, and (1.2) was used in the last
step. Thus, g + h(x)/n ≤ JC,n(x)/n and then

g ≤ lim inf
n→∞

1

n
JC,n(x), x ∈ S;

via (4.2), it follows that g = lim
n→∞

1

n
JC,n(x) for every state x, a fact that, using the

factorization equality (2.2), is equivalent to lim
n→∞

(
EνC,x,n

[
eh(Xn)

])1/n
=1, complet-

ing the proof. ¤
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5. THE TRANSIENT CASE

In this section Theorem 2.1 will be used to point out an interesting contrast between
the risk-sensitive index (1.1), and the risk-neutral average cost criterion which, for
C ∈ B(S), is given by

J̃C(x) = lim sup
n→∞

1

n
Ex

[
n−1∑

n=1

C(Xt)

]
, x ∈ S.

Suppose that Assumption 2.1 holds and that the transition matrix P = [px y] is
transient, that is,

Pz[Tz < ∞] < 1 (5.1)

for some (and hence, for all) z ∈ S. In this context it is known that Assumption 2.1
yields

1

n
Ex

[
n−1∑

t=1

I[Xt = y]

]
→ 0 as n → ∞,

for every x, y ∈ S, (Loève [18]), so that J̃C(·) = 0 when C has finite support. In
contrast, it will be shown in the second part of the following theorem that the risk-
sensitive average cost JC(·) may be positive under Assumptions 2.1 and 2.2 even if
the transience condition (5.1) holds. Given z ∈ S and a ≥ 0 set

Cz a(x) = 0 if x 6= z

= a, if x = z. (5.2)

Theorem 5.1. Let z ∈ S and a > 0 be arbitrary but fixed, and suppose that
Assumption 2.1 and the transience condition (5.1) hold.

(i) If a ∈ (0, − log(Pz[Tz < ∞]) set

L : = − log

(
e−a − Pz[Tz < ∞]

Pz[Tz = ∞]

)
(5.3)

and define h : S → R by

h(x) : = 0 if x = z

: = log(Px[Tz < ∞] + e−LPx[Tz = ∞]) if x 6= z. (5.4)

In this case assertions (a) – (c) below hold:

(a) L ∈ (0, ∞) and h(x) ∈ (−L, 0] for every x ∈ S.

(b) h(x) < 0 for some x 6= z;

(c) The pair (0, h(·)) satisfies the Poisson equation (1.3) associated with the
cost function Cz a:

eh(x) = eCz a(x)
∑

y∈S

px yeh(y), x ∈ S. (5.5)



Risk–Sensitive Poisson Equation for Communicating Markov Chains 727

Consequently,

(ii) JCz a(·) > 0 if and only if a > − log(Pz[Tz < ∞]).

The proof of this result uses the following lemma

Lemma 5.1. For each D ∈ B(S) and x ∈ S let JD(x) be the risk-sensitive average
cost at x corresponding to D, which is obtained replacing C by D in (1.1) and (1.2).
In this case, the mapping D 7→ JD(·) is convex, that is, for each D,D1 ∈ B(S) and
β ∈ (0, 1),

JβD+(1−β)D1
(x) ≤ βJD(x) + (1 − β)JD1(x), x ∈ S.

P r o o f . Notice that for each positive integer n and x ∈ S

eJβD+(1−β)D1,n(x) = Ex

[
e

Pn−1
t=0 (βD(Xt)+(1−β)D1(Xt))

]

= Ex

[
eβ

Pn−1
t=0 D(Xt)e(1−β)

Pn−1
t=0 D1(Xt))

]

and an application of Hölder’s inequality yields

eJβD+(1−β)D1,n(x) ≤
(
Ex

[
e

Pn−1
t=0 D(Xt)

])β (
Ex

[
e

Pn−1
t=0 D1(Xt))

])(1−β)

= eβJD,n(x)e(1−β1)JD1,n(x).

Therefore,

1

n
JβD+(1−β)D1,n(x) ≤ β

1

n
JD,n(x) + (1 − β)

1

n
JD1,n(x)

and the conclusion follows taking the limit superior as n → ∞. ¤

The following argument establishes Theorem 5.1.

P r o o f . (i) Let a ∈ (0,− log(Pz[Tz < ∞])) be arbitrary but fixed. In this case
eaPz[Tz < ∞] < 1, so that

e−a − Pz[Tz < ∞]

Pz[Tz = ∞]
=

1 − eaPz[Tz < ∞]

ea(1 − Pz[Tz < ∞])
∈ (0, 1)

and it follows that L in (5.3) is well-defined and is a positive finite number. On the
other hand, using that Px[Tz < ∞] > 0 always holds, by Assumption 2.1, it follows
that

e−L = e−LPx[Tz < ∞] + e−LPx[Tz = ∞] < Px[Tz < ∞] + e−LPx[Tz = ∞] ≤ 1

and then the specification of h(·) yields that h(·) ∈ (−L, 0], establishing the part (a).
To prove the part (b), notice that Pz[Tz = ∞] > 0, by (5.1), and using the Markov
property and Definition 3.1 it follows that 0 < Pz[Tz = ∞] =

∑
y 6=z pz yPy[Tz = ∞],

so that there exists y 6= z such that Py[Tz = ∞] > 0; in this case, since L is a finite
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positive number, Py[Tz < ∞] + e−LPy[Tz = ∞] < Py[Tz < ∞] + Py[Tz = ∞] = 1,
and then h(y) < 0, by (5.4). To establish (5.5), first notice that (5.3) and (5.4)
together imply that, for each x ∈ S, the following equalities are valid:

1 = eh(z) = eaPz[Tz < ∞] + ea−LPz[Tz = ∞];

eh(x) = Px[Tz < ∞] + e−LPx[Tz = ∞], x 6= z, (5.6)

whereas, via the Markov property, Definition 3.1 yields that

Px[Tz < ∞] = px z +
∑

y 6=z

px yPy[Tz < ∞],

Px[Tz = ∞] =
∑

y 6=z

px yPy[Tz < ∞]. (5.7)

Now let x 6= z be arbitrary. In this case the above display and the second equality
in (5.6) together lead to

eh(x) = Px[Tz < ∞] + e−LPx[Tz = ∞]

= px z +
∑

y 6=z

px yPy[Tz < ∞] + e−L
∑

y 6=z

px yPy[Tz = ∞]

= px z +
∑

y 6=z

px y

(
Py[Tz < ∞] + e−LPy[Tz = ∞]

)

= px z +
∑

y 6=z

px yeh(y)

=
∑

y∈S

px yeh(y),

where the specification h(z) = 0 was used in the last step; since Cz a(x) = 0, it
follows that the equality in (5.5) holds if x 6= z. To conclude, notice that (5.7) and
the first equation in (5.6) together imply that

1 = eh(z) = eaPz[Tz < ∞] + ea−LPz[Tz = ∞]

= ea


pz z +

∑

y 6=z

pz yPy[Tz < ∞]


 + ea−L

∑

y 6=z

pz yPy[Tz = ∞]

= eapz z + ea
∑

y 6=z

pz y

(
Py[Tz < ∞] + e−LPy[Tz = ∞]

)

= eapz z + ea
∑

y 6=z

pz yeh(y)

= eapz ze
h(z) + ea

∑

y 6=z

pz yeh(y) = ea
∑

y∈S

pz yeh(y),
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and then, since Cz a(z) = a, it follows that the equation in (5.5) also holds for x = z,
completing the proof of the part (i).

(ii) Given a > 0 and z ∈ S, it will be shown that

JCz a(·) = 0 ⇐⇒ a ≤ − log(Pz[Tz < ∞]),

an assertion that is equivalent to the desired conclusion.

• Suppose that JCz a(·) = 0. By Theorem 2.1 there exists a function h(·) such that,
for every x ∈ S,

eh(x) = eCz a(x)
∑

y∈S

px yeh(y)

= Ex

[
eCz a(X0)+h(X1)

]

= Ex

[
eCz a(X0)+h(X1)I[Tz = 1]

]
+ Ex

[
eCz a(X0)+h(X1)I[Tz > 1]

]

= Ex

[
eCz a(X0)+h(z)I[Tz = 1]

]
+ Ex

[
eCz a(X0)+h(X1)I[Tz > 1]

]
,

where it was used that XTz = z on the event [Tz < ∞]. From this point, an induction
argument using the Markov property yields that, for each x ∈ S and n = 1, 2, 3, . . .

eh(x) = Ex

[
e

PTz−1
t=0 Cz a(Xt)+h(z)I[Tz ≤ n]

]
+ Ex

[
e

Pn−1
t=0 Cz a(Xt)+h(Xn)I[Tz > n]

]
.

Therefore, eh(x) ≥ Ex

[
e

PTz−1
t=0 Cz a(Xt)+h(z)I[Tz ≤ n]

]
and via Fatou’s lemma this

implies that eh(x) ≥ Ex

[
e

PTz−1
t=0 Cz a(Xt)+h(z)I[Tz < ∞]

]
; setting x = z in this last

inequality, it follows that

1 ≥ Ez

[
e

PTz−1
t=0 Cz a(Xt)I[Tz < ∞]

]
.

Observing that Xt 6= z for 1 ≤ t < Tz, by Definition 3.1, it follows from the
specification of Cz a that

∑Tz−1
t=0 Cz a(Xt) = Cz a(X0) = a Pz-almost surely, so that

the above displayed relation is equivalent to 1 ≥ Ez[e
aI[Tz < ∞]] = eaPz[Tz < ∞],

and then a ≤ − log(Pz[Tz < ∞]).

• Suppose that a ≤ − log(Pz[Tz < ∞]). In this case it will be shown that JCz a(·) = 0,
and to achieve this goal firstly assume that

a < − log(Pz[Tz < ∞]),

so that part (i) yields that there exists a bounded function h(·) such that the
pair (0, h(·)) satisfies the Poisson equation associated with Cz a, that is eh(x) =
eCz a(x)

∑
y∈S px yeh(y) for each x ∈ S; from the boundedness of h(·) it follows that

(2.3) holds, and then

JCz a(x) = 0, x ∈ S, 0 < a < − log(Pz[Tz < ∞]),
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by Lemma 2.1. On the other hand, combining Lemma 5.1 with the specification
of Cz a(·) in (5.2), it follows that the mapping a 7→ JCz a(x) is always convex; con-
sequently, such a mapping is continuous, and then the above display yields that
JCz a(·) = 0 if 0 < a ≤ − log(Pz[Tz < ∞]), which is the desired conclusion. ¤

Example 5.1. Given a sequence {pk | k = 0, 1, 2, 3, . . .} ⊂ (0, 1), set

qk : = 1 − pk, k = 0, 1, 2, 3, . . . ,

and on the space S of nonnegative integers define the transition matrix P = [px y]
as follows:

p0 0 = p0, p0 1 = q0

px 0 = px, px x+1 = qx, x = 1, 2, 3, . . .

In this case it is not difficult to see that the state space is communicating with
respect to P , and that P0[T0 > n] =

∏n−1
k=0 qk, so that

P0[T0 = ∞] =
∞∏

k=0

qk =
∞∏

k=0

(1 − pk),

which is positive if and only if
∞∑

k=0

pk < ∞. (5.8)

Under this condition Theorem 5.1 implies that JC0,a(·) > 0 if a > −∑∞
k=0 log(1−pk),

whereas if

0 < a < −
∞∑

k=0

log(qk) (5.9)

then there exists a non constant and bounded function such that

eh(0) = eap0e
h(0) + eaq0e

h(1)

eh(x) = pxeh(0) + qxeh(x+1), x = 1, 2, 3, . . . ; (5.10)

this latter fact will be useful in the following section.

6. UNIQUENESS

In this section the uniqueness of a pair (g, h(·)) satisfying the Poisson equation (1.3)
and the verification criterion (2.3) is analyzed. By Lemma 2.1, if such requirements
hold then g is uniquely determined as the risk-sensitive average cost corresponding
to C, whereas it is not difficult to see that both conditions still hold if h(·) is replaced
by h(·)+M , where M is an arbitrary real number. The main objective of this section
is to provide a sufficient criterion such that, if (g, h(·)) satisfies the Poisson equation
(1.3) as well as the criterion (2.3), then h(·) is uniquely determined up to an additive
constant. As the following example shows, this latter property does not necessarily
occur.
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Example 6.1. Consider a sequence {pk} satisfying

{pk} ⊂ (0, 1), p0 = 2/3, and
∞∑

k=0

pk < ∞,

and let a > 0 be such that

a < −
∞∑

k=0

log(qk) (6.1)

where, as before, qk = 1 − pk; as it was shown in Example 5.1, in this framework
there exists a bounded and non constant function h(·) so that (5.10) holds. Now, on
the space S of nonnegative integers, define the transition matrix P = [px y] by

p0 0 = p0 1 = p0 2 =
1

3
p2x 0 = p2x−1 0 = px, p2x 2x+2 = p2x−1 2x+1 = qx = 1 − px, x = 1, 2, 3, . . . .

For this matrix P , the existence of bounded functions H(·) such that the pair
(0,H(·)) satisfies the following Poisson equation corresponding to the cost function
C0 a in (5.2) will be analyzed:

e0+H(x) = eC0 a(x)
∑

y∈S

px yeH(y), x ∈ S. (6.2)

More explicitly, this can be written as

eH(0) = ea

[
1

3
eH(0) +

1

3
eH(1) +

1

3
eH(2)

]
,

eH(2x) = pxeH(0) + qxeH(2x+2), x = 1, 2, 3, . . . ,

eH(2x−1) = pxeH(0) + qxeH(2x+1), x = 1, 2, 3, . . . .

To build solutions for this system, first impose the condition H(0) = H(1). In this
case from the third line of the above display it is not difficult to see that H(x) = H(0)
if x is odd. Also, recalling that p0 = 2/3, the first and second line become

eH(0) = ea
[
p0e

H(0) + q0e
H(2)

]

eH(2x) = pxeH(0) + qxeH(2(x+1)), x = 1, 2, 3, . . . ,

and a glance at (5.10) shows that this system is satisfied setting H(2x) = h(x) for
every x. Thus, the following function is a solution of (6.2):

H1(x) = h(0) if x is odd, and H1(x) = h(k), if x = 2k, k = 1, 2, 3, . . .

Similarly, it can be shown that (6.2) is also satisfied by the function H2(·) given by

H2(x) = h(0) if x is even, and H2(x) = h(k) if x = 2k − 1, k = 1, 2, 3, . . ..
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In short, each pair (0,Hi(·)), i = 1, 2, is a solution to the Poisson equation associated
with the cost function C0 a, where a satisfies (6.1). Since Hi(·) is bounded, Lemma
2.1 yields that JC0 a(·) = 0. However, recalling that h(·) takes on at least two
different values, it follows that the difference H1 − H2 is not constant.

The discussion on the uniqueness properties of a pair (g, h(·)) satisfying the Pois-
son equation (1.3) and the criterion (2.3) is based on the following idea.

Definition 6.1. Suppose that Assumptions 2.1 and 2.2 hold, and let g ∈ R and
h : S → (−∞, 0] be such that the conclusions of Theorem 2.1 hold.

(i) The matrix Q = [qx y]x,y∈S corresponding to the pair (g, h(·)) is defined by

qx y : =
eC(x)−gpx yeh(y)

eh(x)
, x, y ∈ S;

notice that, since the Poisson equation (1.3) holds, this matrix Q is stochastic,
that is, 1 =

∑
y∈S qx y for each x ∈ S.

(ii) For each x ∈ S, Qx denotes the distribution on B(S∞) induced by matrix Q
when the initial state is X0 = x.

In the following lemma sufficient conditions are given so that the matrix Q in the
above definition is recurrent.

Lemma 6.1. Suppose that Assumptions 2.1 and 2.2 hold. In this case the following
assertions (i) – (iii) hold:

(i) The state space S is Q-communicating, that is, for each x, y ∈ S there exists
a positive integer n = n(x, y) such that Qx[Xn = y] > 0.

(ii) For each W ⊂ S and n = 1, 2, 3, . . .

Qx[TW > n] =
1

eh(x)
Ex

[
e

Pn−1
t=0 (C(Xt)−g)eh(Xn)I[TW > n]

]
, x ∈ S. (6.3)

(iii) Suppose that at least one of the following conditions (a) and (b) hold:

(a) The Markov chain {Xn} is P -recurrent, i. e., Pz[Tz < ∞] = 1 for some
(and hence, for all) state z ∈ S;

(b) The average cost g = JC(·) is positive.

In this context the Markov chain {Xn} is Q-recurrent, that is, the equality

Qz[Tz < ∞] = 1

holds for every z ∈ S.
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P r o o f .

(i) Observing that Definition 6.1 yields that qx y 6= 0 if and only if px y 6= 0, the
conclusion follows from Assumption 2.1.

(ii) Let W ⊂ S and x0 ∈ S be arbitrary. Using Definitions 3.1 and 6.1 it follows
that for each n = 1, 2, 3, . . .

Qx0 [TW > n] = Qx0 [X1 /∈ W, . . . ,Xn /∈ W ]

=
∑

xi /∈W
i=1,2,...,n

n∏

i=1

qxi−1, xi

=
∑

xi /∈W
i=1,2,...,n

n∏

i=1

eC(xi−1)−geh(xi)pxi−1 xi

eh(xi−1)

=
1

eh(x0)

∑

xi /∈W
i=1,2,...,n

e
Pn−1

t=0 (C(xt)−g)eh(xn)
n∏

i=1

pxi−1 xi

=
1

eh(x0)
Ex0

[
e

Pn−1
t=0 (C(Xt)−g)eh(Xn)I[X1 /∈ W, . . . ,Xn /∈ W ]

]

=
1

eh(x0)
Ex0

[
e

Pn−1
t=0 (C(Xt)−g)eh(Xn)I[TW > n]

]
.

(iii) Using that the state space S is Q-communicating and that the set K in (2.4)
is finite, it follows that the Q-recurrence of {Xn} is equivalent to

lim
n→∞

Qx[TK > n] = 0, x ∈ S \ K. (6.4)

This property can be verified under either of the conditions (a) and (b) as
follows: Firstly, recall that Xt /∈ K for 1 ≤ t < TK , by Definition 3.1, and in
this case C(Xt) = 0, since C is supported on K. Thus, if X0 /∈ K it follows

that
∑n−1

t=0 (C(Xt) − g) = −ng on the event [TK > n], and via the previous
part it follows that for each positive integer n and x ∈ S \ K

Qx[TK > n] =
1

eh(x)
Ex

[
e

Pn−1
t=0 (C(Xt)−g)eh(Xn)I[TK > n]

]

=
1

eh(x)
e−ngEx

[
eh(Xn)I[TK > n]

]
,

and recalling that h(·) ≤ 0 (see Theorem 2.1 and Definition 6.1), this leads to

Qx[TK > n] ≤ 1

eh(x)
e−ngPx[TK > n], x ∈ S \ K, n = 1, 2, 3, . . . (6.5)

(a) Assume that {Xn} is P -recurrent. In this case, it follows that
limn→∞ Px[TK > n] = 0 for every x ∈ S \ K, and then, since g ≥ 0, the
above display immediately leads to (6.4).
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(b) Suppose that g > 0. In this context (6.5) yields that, for each state
x ∈ S \ K,

lim
n→∞

Qx[TK > n] ≤ e−h(x) lim
n→∞

e−ng = 0,

so that (6.4) also holds in this case.

¤
The main result of this section is the following.

Theorem 6.1. Suppose that Assumptions 2.1 and 2.2 hold, let g ∈ R and h : S →
(−∞, 0] be as in Theorem 2.1 and assume that

{Xn} is Q-recurrent, (6.6)

where Q is the matrix in Definition 6.1. In this case, if h̃ : S → R is such that

eg+h̃(x) = eC(x)
∑

y∈S

px yeh̃(y), x ∈ S, (6.7)

then h̃(·) − h(·) is constant.

Notice that Example 6.1 explicitly shows that if condition (6.6) does not hold,
then the conclusion of this theorem does not necessarily occur.

P r o o f . From (6.7) and Definition 6.1 it follows that for every x ∈ S

eh̃(x)−h(x) = eC(x)−g
∑

y∈S

px y

eh(x)
eh̃(y)

=
∑

y∈S

eC(x)−gpx yeh(y)

eh(x)
eh̃(y)−h(y)

=
∑

y∈S

qx yeh̃(y)−h(y)

so that
eh̃(x)−h(x) = EQ

x

[
eh̃(X1)−h(X1)

]
, x ∈ S,

where EQ
x [·] stands for the expectation operator with respect to Qx. It follows that

eh̃(x)−h(x) = eh̃(z)−h(z)Qx[Tz = 1] + EQ
x

[
eh̃(X1)−h(X1)I[Tz > 1]

]

for every x, z ∈ S, and an induction argument using the Markov property yields that

eh̃(x)−h(x) = eh̃(z)−h(z)Qx[Tz ≤ n] + EQ
x

[
eh̃(Xn)−h(Xn)I[Tz > n]

]

always holds, so that

eh̃(x)−h(x) ≥ eh̃(z)−h(z)Qx[Tz ≤ n], x, z ∈ S, n = 1, 2, 3, . . .
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To conclude notice that, since the state space is Q-communicating, (6.6) implies that

1 = Qx[Tz < ∞] = lim
n→∞

Qx[Tz ≤ n], x, z ∈ S,

a fact that, via the previous display, yields that the inequality eh̃(x)−h(x) ≥ eh̃(z)−h(z)

is always valid, and it follows that h̃(·) − h(·) is constant. ¤

From Theorem 6.1 it follows that, if {Xn} is Q-recurrent, then conditions (1.3)
and (2.3) determine function h(·) up to an additive constant.

Corollary 6.1. Suppose that Assumptions 2.1 and 2.2 as well as condition (6.6)
hold, where matrix Q is specified in Definition 6.1. In this framework, if gi ∈ R and
hi : S → R, i = 1, 2 are such that

egi+hi(x) = eC(x)
∑

y∈S

px,yehi(y) (6.8)

and

lim inf
n→∞

(
EνC,x,n

[
ehi(Xn)

])1/n

= 1 (6.9)

for every x ∈ S and i = 1, 2, then h1(·) − h2(·) is constant.

P r o o f . Let g ∈ R and h(·) be as in Theorem 2.1. By Lemma 2.1, (6.8) and
(6.9) together imply that gi = JC(·) = g for each i. Then, Theorem 6.1 yields that
hi(·) − h(·) is constant for i = 1, 2; see (6.7) and (6.8). Thus, h1(·) − h2(·) is also
constant. ¤
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