[1] J.-P. Aubin and A. Cellina:
Differential inclusions, set-valued maps and viability theory. (Grundlagen Math. Wiss. 264.) Springer–Verlag, Berlin 1984.
MR 0755330
[2] J. M. Ball:
Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations. Nonlinear Sci. 7 (1997), 475–502. Erratum, ibid 8 (1998), 233.
MR 1462276 |
Zbl 0958.35101
[3] N. P. Bhatia and G. P. Szegö:
Stability Theory of Dynamical Systems. Springer-Verlag, Berlin 1970.
MR 0289890
[4] G. Chen and T. Ueta:
Yet another chaotic attractor. Internat. J. Bifurcation Chaos 9 (1999), 1465–1466.
MR 1729683
[5] S. Čelikovský and G. Chen:
On a generalized Lorenz canonical form. Chaos, Solitons and Fractals 26 (2005), 1271–1276.
MR 2149315
[6] S. Čelikovský and G. Chen: On a generalized Lorenz canonical form of chaotic systems. Internat. J. Bifurcation Chaos, in press.
[7] S. Čelikovský and A. Vaněček: Bilinear systems and chaos. Kybernetika 30 (1994), 403–424.
[9] S. Day:
A Rigorous Numerical Method in Infinite Dimensions. PhD Thesis, Georgia Institute of Technology 2003.
MR 2620074
[10] S. Day, Y. Hiraoka, K. Mischaikow, and T. Ogawa:
Rigorous numerics for global dynamics: A study of the Swift–Hohenberg equation. SIAM J. Appl. Dynamical Systems 1 (2005), 4, 1–31.
MR 2136516
[11] S. Day, J.-P. Lessard, and K. Mischaikow:
Validated continuation for equilibria of PDFs. to appear in SIAM J. Numer. Anal. 2007.
MR 2338393
[12]
L. Dieci and T. Eirola. Numerical Dynamical Systems. School of Mathematics, Georgia Institute of Technology, Institute of Mathematics, Helsinky University of Technology 2005.
[13] J. Guckenheimer: A strange, strange attractor. In: The Hopf Bifurcation and Applications (Applied Math. Sciences 19, J. Marsden and J. McCracken, eds.), Springer–Verlag, Berlin 1976, pp. 368–381.
[14] T. Kaczynski, K. Mischaikow, and M. Mrozek:
Computational Homology. (Appl. Math. Sci. Series 157.) Springer–Verlag, New York 2004.
MR 2028588
[15] A. Katok and B. Hasselbatt: Introduction to the Modern Theory of Dynamic Systems. Cambridge University Press, Cambridge 1997.
[16] J.-P. Lessard:
Validated Continuation for Infinite Dimensional Problems. PhD Thesis, Georgia Institute of Technology 2007.
MR 2626583
[17] E. N. Lorenz: Deterministic nonperiodic flow. J. Atmospheric Sci. 20, (1963), 130–141.
[18] J. Lü and G. Chen:
A new chaotic attractor coined. Internat. J. Bifurcation Chaos 3 (2002), 12, 659–661.
MR 1894886
[19] J. Lü, G. Chen, D. Cheng, and S. Čelikovský:
Bridge the gap between the Lorenz system and the Chen system: Internat. J. Bifurcation Chaos 12 (2002), 12, 2917–2926.
MR 1956411
[20] J. Lü, G. Chen, and D. Cheng:
A new chaotic system and beyond: the generalized Lorenz-like system. Internat. J. Bifurcation Chaos 5 (2004), 12, 1507–1537.
MR 2072347
[21] V. S. Melnik and J. Valero:
On attractors of multivalued semi-flows and differential inclusions. Set-Valued Analysis 6 (1998), 83–111.
MR 1631081
[22] K. Mischaikow:
Conley index theory: A brief introduction. In: Conley Index Theory, Banach Center Publication 1999.
MR 1675403 |
Zbl 0946.37010
[23] K. Mischaikow and M. Mrozek:
Conley index, mathematical computation. In: Handbook of Dynamical Systems, Berlin, Elsevier 2002.
MR 1901060
[24] K. Mischaikow and M. Mrozek:
Chaos in Lorenz equations: A computer assisted proof. Bull. Amer. Math. Soc. 32 (1995), 66–72.
MR 1276767
[25] K. Mischaikow and M. Mrozek:
Chaos in Lorenz equations: A computer assisted proof. Part II: Details. Math. Computation 67 (1998), 1023–1046.
MR 1459392
[26] K. Mischaikow, M. Mrozek, and A. Szymczak: Chaos in Lorenz Equations: A Computer Assisted Proof. Part III: Classical Parameter Values, Research supported by NSF 9805584 and by KBN, Grant 2 P03A 029 12.
[27] H. Poincaré: Les Méthodes Nouvelles de la Mécanique Céleste. Gauthier-Villars 1899. English translation: New Methods of Celestial Mechanics by D. Goroff, AIP Press.
[28] D. Ruelle and F. Takens:
On the nature of the turbulence. Commun. Math. Phys. 20 (1963), 167–192.
MR 0284067
[29] J. C. Sprott:
Some simple chaotic flows. Phys. Rev. E50 (1994), R647–R650.
MR 1381868
[30] J. C. Sprott: Strange Attractors: Creating Patterns in Chaos. M&T Books, New York 1993.
[31] A. M. Stuart and A. R. Humphries:
Dynamical Systems and Numerical Analysis. Cambridge Univ. Press, Cambridge 1996.
MR 1402909
[33] R. F. Williams:
The structure of Lorenz attractors. Publ. Math. de l’I.H.É.S 50 (1979), 73–99.
MR 0556583 |
Zbl 0484.58021
[34] S. Wong:
Newton’s method and symbolic dynamics. Proc. Amer. Math. Soc. 2 (1984), 91, 245–253.
MR 0740179 |
Zbl 0554.65038