Previous |  Up |  Next

Article

Keywords:
Free lattice; test lattice; lattice identity; Whitman’s condition
Summary:
Let $p$ be a $k$-ary lattice term. A $k$-pointed lattice $L=(L;\vee ,\wedge $, $d_1,\ldots ,d_k)$ will be called a $p$-lattice (or a test lattice if $p$ is not specified), if $(L;\vee ,\wedge )$ is generated by $\lbrace d_1,\ldots ,d_k\rbrace $ and, in addition, for any $k$-ary lattice term $q$ satisfying $p(d_1,\ldots ,d_k)$ $\le $ $q(d_1$, $\ldots , d_k)$ in $L$, the lattice identity $p\le q$ holds in all lattices. In an elementary visual way, we construct a finite $p$-lattice $L(p)$ for each $p$. If $p$ is a canonical lattice term, then $L(p)$ coincides with the optimal $p$-lattice of Freese, Ježek and Nation [Freese, R., Ježek, J., Nation, J. B.: Free lattices. American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs 42, 1995, viii+293 pp.]. Some results on test lattices and short proofs for known facts on free lattices indicate that our approach is useful.
References:
[1] Czédli, G.: On properties of rings that can be characterized by infinite lattice identitites. Studia Sci. Math. Hungar. 16 (1981), 45–60. MR 0703640
[2] Czédli, G.: Mal’cev conditions for Horn sentences with congruence permutability. Acta Math. Hungar. 44 (1984), 115–124. MR 0759039
[3] Czédli, G.: On the word problem of lattices with the help of graphs. Periodica Math. Hungar. 23 (1991), 49–58. MR 1141351
[4] Czédli, G., Day, A.: Horn sentences with (W) and weak Mal’cev conditions. Algebra Universalis 19 (1984), 217–230. MR 0758319 | Zbl 0549.08003
[5] Day, A.: Doubling constructions in lattice theory. Canad. J. Math. 44 (1992), 252–269. MR 1162342 | Zbl 0768.06006
[6] Freese, R., Ježek, J., Nation, J. B.: Free lattices. American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs 42, 1995, viii+293 pp. MR 1319815
[7] Freese, R., Nation, J. B.: Congruence lattices of semilattices. Pacific J. Math. 49 (1973), 51–58. MR 0332590 | Zbl 0287.06002
[8] Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, 1998 sec. ed. MR 1670580
[9] Haiman, M.: Proof theory for linear lattices. Adv. in Math. 58 (1985), 209–242. MR 0815357 | Zbl 0584.06003
[10] Jónsson, B.: On the representation of lattices. Math. Scandinavica 1 (1953), 193–206. MR 0058567
[11] Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scandinavica 21 (1967), 110–121. MR 0237402
[12] Lipparini, P.: From congruence identities to tolerance identities. Acta Sci. Math. (Szeged) 73 (2007), 31–51. MR 2339851 | Zbl 1136.08001
[13] Whitman, Ph. M.: Free lattices. Ann. of Math. 42 (1941), 325–330. MR 0003614 | Zbl 0024.24501
Partner of
EuDML logo