Previous |  Up |  Next

Article

Keywords:
Basic algebra; basic pseudoring; orthomodular lattice
Summary:
The concept of a basic pseudoring is introduced. It is shown that every orthomodular lattice can be converted into a basic pseudoring by using of the term operation called Sasaki projection. It is given a mutual relationship between basic algebras and basic pseudorings. There are characterized basic pseudorings which can be converted into othomodular lattices.
References:
[1] Beran, L.: Orthomodular Lattices. Reidel Publ., Dordrecht, 1985. MR 0784029 | Zbl 0583.06008
[2] Birkhoff, G.: Lattice Theory. Publ. AMS, Providence, 1967. MR 0227053 | Zbl 0153.02501
[3] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Heldermann Verlag, Lemgo, 2007. MR 2326262 | Zbl 1117.06001
[4] Chajda, I., Kolařík, M.: Independence of axiom system of basic algebras. Soft Computing 13, 1 (2009), 41–43. Zbl 1178.06007
[5] Chajda, I., Länger, H.: Ring-like structures corresponding to MV-algebras via symmetrical difference. Sitzungsberichte ÖAW, Math.–Naturw. Kl. Abt. II 213 (2004), 33–41. MR 2251532
[6] Dorfer, G., Dvurečenskij, A., Länger H.: Symmetric difference in orthomodular lattices. Math. Slovaca 46 (1996), 435–444. MR 1451034
[7] Dorninger, D., Länger, H., Maczyński, M.: The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30 (1997), 215–232. MR 1446613
[8] Dorninger, D., Länger, H., Maczyński, M.: On ring-like structures occuring in axiomatic quantum mechanics. Sitzungsberichte ÖAW, Math.–Naturw. Kl. Abt. II 206 (1997), 279–289. MR 1632939
[9] Dorninger, D., Länger, H., Maczyński, M.: Lattice properties of ring-like quantum logics. Intern. J. of Theor. Physics 39 (2000), 1015–1026. MR 1779170
[10] Shang, Y.: Ring-like structures corresponding to pseudo MV-algebras. Soft Computing 13, 1 (2009), 71–76. Zbl 1165.06005
Partner of
EuDML logo