[3] Chajda, I., Halaš, R., Kühr, J.:
Semilattice Structures. Heldermann Verlag, Lemgo, 2007.
MR 2326262 |
Zbl 1117.06001
[4] Chajda, I., Kolařík, M.:
Independence of axiom system of basic algebras. Soft Computing 13, 1 (2009), 41–43.
Zbl 1178.06007
[5] Chajda, I., Länger, H.:
Ring-like structures corresponding to MV-algebras via symmetrical difference. Sitzungsberichte ÖAW, Math.–Naturw. Kl. Abt. II 213 (2004), 33–41.
MR 2251532
[6] Dorfer, G., Dvurečenskij, A., Länger H.:
Symmetric difference in orthomodular lattices. Math. Slovaca 46 (1996), 435–444.
MR 1451034
[7] Dorninger, D., Länger, H., Maczyński, M.:
The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30 (1997), 215–232.
MR 1446613
[8] Dorninger, D., Länger, H., Maczyński, M.:
On ring-like structures occuring in axiomatic quantum mechanics. Sitzungsberichte ÖAW, Math.–Naturw. Kl. Abt. II 206 (1997), 279–289.
MR 1632939
[9] Dorninger, D., Länger, H., Maczyński, M.:
Lattice properties of ring-like quantum logics. Intern. J. of Theor. Physics 39 (2000), 1015–1026.
MR 1779170
[10] Shang, Y.:
Ring-like structures corresponding to pseudo MV-algebras. Soft Computing 13, 1 (2009), 71–76.
Zbl 1165.06005