Previous |  Up |  Next

Article

Keywords:
Aitchison geometry on the simplex; oordinates; ellipse
Summary:
Compositional data, multivariate observations that hold only relative information, need a special treatment while performing statistical analysis, with respect to the simplex as their sample space ([Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman and Hall, London, 1986.], [Aitchison, J., Greenacre, M.: Biplots of compositional data. Applied Statistics 51 (2002), 375–392.], [Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds): Compositional data analysis in the geosciences: From theory to practice. Geological Society, London, Special Publications 264, 2006.], [Filzmoser, P., Hron, K.: Outlier detection for compositional data using robust methods. Math. Geosci. 40 (2008), 233–248.], [Filzmoser, P., Hron, K.: Correlation analysis for compositional data. Math. Geosci., to appear.], [Filzmoser, P., Hron, K., Reimann, C.: Principal component analysis for compositional data with outliers. Environmetrics, to appear.], [Filzmoser, P., Hron, K., Reimann, C., Garrett, R.: Robust factor analysis for compositional data. Computers & Geosciences, to appear.], [Pearson, K.: Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London 60 (1897), 489–502.]). For the logratio approach to the statistical analysis of compositional data the so called Aitchison geometry was introduced and confirmed to be the meaningful one. It was shown in [Egozcue, J. J., Pawlowsky-Glahn, V.: Simplicial geometry for compositional data. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., (eds): Compositional data analysis in the geosciences: From theory to practice. Geological Society, London, Special Publications 264 (2006), 145–160.], [Pawlowsky-Glahn, V., Egozcue, J. J., Tolosana-Delgado, J.: Lecture notes on compositional data analysis. http://hdl.handle.net/10256/297, 2007.] that it is quite easy to express simple geometric objects like compositional lines, this is however not the case for ellipses, although they play a fundamental role within most statistical methods, for example in outlier detection ([Filzmoser, P., Hron, K.: Outlier detection for compositional data using robust methods. Math. Geosci. 40 (2008), 233–248.]). The aim of the paper is to introduce a way, based on coordinate representations of compositions, how to obtain an analytical representation of ellipses in the Aitchison geometry.
References:
[1] Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman and Hall, London, 1986. MR 0865647 | Zbl 0688.62004
[2] Aitchison, J., Greenacre, M.: Biplots of compositional data. Applied Statistics 51 (2002), 375–392. MR 1977249 | Zbl 1111.62300
[3] Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V.: Compositional data analysis in the geosciences: From theory to practice. Geological Society, London, Special Publications 264, 2006. Zbl 1155.86002
[4] Daunis-i-Estadella, J., Barceló-Vidal, C., Buccianti, A.: Exploratory compositional data analysis. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., (eds): Compositional data analysis in the geosciences: From theory to practice. Geological Society, London, Special Publications 264 (2006), 161–174. DOI 10.1144/GSL.SP.2006.264.01.12 | Zbl 1158.86333
[5] Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueraz, G., Barceló-Vidal, C.: Isometric logratio transformations for compositional data analysis. Math. Geol. 35 (2003), 279–300. DOI 10.1023/A:1023818214614 | MR 1986165
[6] Egozcue, J. J., Pawlowsky-Glahn, V.: Groups of parts and their balances in compositional data analysis. Math. Geol. 37 (2005), 795–828. DOI 10.1007/s11004-005-7381-9 | MR 2183639 | Zbl 1177.86018
[7] Egozcue, J. J., Pawlowsky-Glahn, V.: Simplicial geometry for compositional data. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., (eds): Compositional data analysis in the geosciences: From theory to practice. Geological Society, London, Special Publications 264 (2006), 145–160. DOI 10.1144/GSL.SP.2006.264.01.11 | Zbl 1156.86307
[8] Filzmoser, P., Hron, K.: Outlier detection for compositional data using robust methods. Math. Geosci. 40 (2008), 233–248. DOI 10.1007/s11004-007-9141-5 | Zbl 1135.62040
[9] Filzmoser, P., Hron, K.: Correlation analysis for compositional data. Math. Geosci., to appear. Zbl 1178.86019
[10] Filzmoser, P., Hron, K., Reimann, C.: Principal component analysis for compositional data with outliers. Environmetrics, to appear.
[11] Filzmoser, P., Hron, K., Reimann, C., Garrett, R.: Robust factor analysis for compositional data. Computers & Geosciences, to appear.
[12] Fišerová, E., Hron, K.: Total least squares solution for compositional data using linear models. Journal of Applied Statistics, to appear.
[13] Jukl, M.: Linear forms on free modules over certain local ring. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 110 (1993), 49–62. MR 1273169 | Zbl 0810.13006
[14] Jukl, M.: Inertial law of quadratic forms on modules over plural algebra. Mathematica Bohemica 3 (1995), 255–263. MR 1369684 | Zbl 0867.11023
[15] Kendall, M. G., Stuart, A.: The advanced theory of statistics, vol 2. Charles Griffin, London, 1967.
[16] Kubáček, L., Kubáčková, L.: One of the calibration problems. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 117–130. MR 1620541
[17] Pawlowsky-Glahn, V., Egozcue, J. J., Tolosana-Delgado, J.: Lecture notes on compositional data analysis. http://hdl.handle.net/10256/297, 2007.
[18] Pearson, K.: Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London 60 (1897), 489–502. DOI 10.1098/rspl.1896.0076
[19] Schuermans, M., Markovsky, I., Wentzell, P. D., Van Huffel, S.: On the equivalence between total least squares and maximum likelihood PCA. Analytica Chimica Acta 544 (2005), 254–267. DOI 10.1016/j.aca.2004.12.059
Partner of
EuDML logo