Previous |  Up |  Next

Article

References:
[1] AVANN S. P.: Metric ternary distributive semilattices. Proc. Amer. Math. Soc. 12 (1961). 407-414. MR 0125807
[2] BAKER K. A.: Finite equational basis for finite algebras in a congruence distributive equational class. Adv. Math. 24 (1977), 207-243. MR 0447074
[3] BANDELT H. J.-HEDLIKOVA J.: Median algebras. Discrete Math. 45 (1983), 1-30. MR 0700848 | Zbl 0538.08003
[4] BANDELT H. J.,MULDER H. M.-WILKEIT E.: Quasi-median graphs and algebras. J. Graph Theory 18 (1994), 681-703. MR 1297190 | Zbl 0810.05057
[5] BIRKHOFF G.-KISS S. A.: A ternary operation in distributive lattices. Bull. Amer. Math. Soc. 53 (1947), 749-752. MR 0021540 | Zbl 0031.25002
[6] DRAŠKOVIČOVÁ H.: Modular median algebra. Math. Slovaca 32 (1982), 269-281. MR 0670003
[7] DRAŠKOVIČOVÁ H.: On some classes of perfect media. In: General Algebra 1988 (Proc. of the International Conference held in memory of W. Nőbauer, Krems, Austria, August 21-27, 1988), Elsevier Science Publisher B.V. (North-Holland), 1990, pp. 65-84. MR 1060345
[8] DRAŠKOVIČOVÁ H.: Varieties of modular median algebras. In: Contribution to General Algebra 7 (Proc. of the Vienna Conference, June 14-17, 1990), Verlag Holder-Pichler-Tempsky, Wien, 1991, pp. 119-125. MR 1143073
[9] FRIED E.-PIXLEY A. F.: The dual discriminator function in universal algebras. Acta Sci. Math. (Szeged) 41 (1979), 83-100. MR 0534502
[10] HASHIMOTO J.: A ternary operation in lattices. Math. Japon. 2 (1951), 49-52. MR 0045688 | Zbl 0044.02102
[11] HEDLÍKOVÁ J.: Chains in modular ternary latticoids. Math. Slovaca 27 (1977). 249-256. MR 0536142 | Zbl 0359.06019
[12] HEDLÍKOVÁ J.: Ternary spaces, media and Chebyshev sets. Czechoslovak Math. J. 33(108) (1983), 373-389. MR 0718922 | Zbl 0544.51011
[13] ISBELL J. R.: Median algebra. Trans. Amer. Math. Soc. 260 (1980), 319-362. MR 0574784 | Zbl 0446.06007
[14] JÓNSSON B.: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110-121. MR 0237402
[15] KOLIBIAR M.-MARCISOVA T.: On a question of J. Hashimoto. Mat. Časopis 24 (1974), 179- 185. MR 0351939 | Zbl 0285.06008
[16] McKENZIE R.: Para-primal varieties: a study of finite axiomatizability and definable principal congruences in locally finite varieties. Algebra Universalis 8 (1978). 336-348. MR 0469853 | Zbl 0383.08008
[17] MULDER H. M.: The interval function of a graph. Math. Centre Tracts 132. Mathematisch Centrum, Amsterdam. MR 0605838 | Zbl 1205.05074
[18] NEBESKÝ L.: Algebraic properties of Husimi trees. Casopis Pest. Mat. 107 (1982). 116-123. MR 0659742 | Zbl 0502.05059
[19] SHOLANDER M.: Trees, lattices, order and betweenness. Proc. Amer. Math. Soc. 3 (1952), 369-381. MR 0048405
[20] SHOLANDER M.: Medians and betweenness. Proc. Amer. Math. Soc. 5 (1954). 801-807. MR 0064749 | Zbl 0056.26101
[21] SHOLANDER M.: Medians, lattices and trees. Proc. Amer. Math. Soc. 5 (1954). 808-812. MR 0064750 | Zbl 0056.26201
Partner of
EuDML logo