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ABSTRACT. Let M denote the variety of algebras with one ternary operation
(abc) satisfying the identities (abb) = b and ((abc)dc) = (ac(dcb)). The subvari-
ety T of the variety M is given by the identity ((abc)de) = ((ade)(bde)(cde)).
It is known that the lattice of subvarieties of the variety 7 forms a strictly in-
creasing sequence (a chain) of varieties 7, n = 1,2,...,w, and T = 7. For
each 7, 1 < n < w, it is given a finite base of identities. The free algebra F,(3)
on three generators over the variety M belongs to the variety 7 . Since we do
not know anything about the free algebra F,,(4) on four generators over M, we
give results about the algebras in M or in 7, respectively, which are generated
by some partial algebras.

Introduction

Denote by M the variety of algebras A with a single ternary operation (zyz)
(notation A = (4;())) satisfying the identities

(1) (abbh) = b,

(2) ((abc)dc) = (ac(dcb)).
The algebras from M are called modular median algebras (shortly m.m. alge-
bras) as in the papers [6] and [8]. Denote by D the subvariety of M given by
the identity

(D) (abe) = (bac).

ANMS Subject Classification (1991): Primary 08B15; Secondary 06C05.
Key words: modular median algebra.
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The variety M was studied by M. Kolibiar and T. Marcisova in
[15]. They have shown that the varicties M and D are related to the varieties
of modular and distributive lattices, respectively: In a modular lattice L. the
ternary operation

(0) (ryz) = (J' AyV ) Vi(gnz) = (eV(ynz)AlyVz)
satisfies the identities (1) and (2). Morcover, if L is distributive. then also (D) is
satisfied. Also a partial converse is true (see [15]): Consider an algebra 1 e\
which contains two specific cleraents 0, 1 and satisfies the identity (O l) = .
Then the algebra (A; AL V), where a2 Ay = (20y), VvV y = (rly). is a modular
lattice in which 0 and 1 are the least and the greatest element. respectively,
and the identity (o) holds. This lattice is distributive if A4 € D.

The study of ternary algebras related to distributive lattices was initiated by
G. Birkhoff and S. A. Kiss [')] and followed by M. Sholander (in 19,
[20], [21]) and many other authors (e.g.. [L]. [15]. [13]; a survey can be found in
[3]).

The study of ternary algebras related to modular lattices was initiated by
J. Hashimoto [10] and followed by other authors (e.g.. [15]. [11]. [12]. {13,
[6], [8]). More general ternary algebras were investigated by J. R. Isbell 113
and J. Hedlikova [12].

Denote by 7 and U the subvariety of the variety M satisfving the identity

(T) ((abc)de) = ((ade)(bde)(cde))

and

(U) ((abc)ad) = (ab(cad)),

respectively.

E. Fried and A. F. Pixley [9] introduced the notion of a dual discrim-
inator variety. It was shown in [6] that 7 is a dual discriminator variety. 7
has equationally definable principal congruences, 7 has congrucence extension
property, and any algebra from 7 can be embedded in a modular lattice. Inde-
pendently, the Varioty 7T appeared as a special subvariety of media introduced by
J. R. Isbell [13] (he called them isotropic media). The identity (U) appeared
in an algebraic description of block graphs (alias Husimi trees) performed by
.. Nebesky [18]. Both identities (T) and (U) are used (sce [{: Theorem 3]) in
a characterization (solely by algebraic identities) of quasi-median algebras. i.c..
algebras associated with quasi-imedian graphs introduced by H. M. NMulder
i [17].

[t was shown in [8; Theorem 1] that the varieties 7 and U coincide. Tt holds
DcCT,D+#T (sce, eg., [8]). Denote by £(M) the lattice of all subvaricties
of the variety of M. It was shown in [8 Theorem 2. Theorem 3] that each
of the identities (D) and () splits the lattice £(M) into two parts. The free
algebra I, ,(3) on three generators over the variety M has six clements and can
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he embedded in the free modular lattice on three generators (cf. [13; Corollary
to 2.2]). Mcreover, F,,(3) belongs to the variety 7 (cf. [13; below 5.14]). We do
not know anything about the free algebra F,(4) on four generators from the
variety M. We know from [13; 5.14] that the variety 7 is locally finite.

In 111( present paper, some results are given about an algebra A € 7 gener-
ated by a partial algebra of order four (Theorem 2 and Theorem 3 below) and
A€ M generated by a partial algebra of order five (Theorem 1), respectively. It
is given a finite base of identities for each subvariety of the variety 7° (Theorem 4
bhelow).

Preliminary results

LEMMA A. ([15; Lemmal]) The following identities and implications hold in
cach A € M.

( = (a

(aad) = a

((al (‘) (abe),
((abc)ac) = (ac(abe)) = (abe),
(ab((ab ) = (abe),
(
(
(al

\_/'\

abe) = ¢ implies (bac) = ¢ = (cab),
bac) = (cab) implies (abc) = (bac),
a(dbe)(abe)) = (abe).

—

et —
— -1
— e e e e e e

—_

Recall from [6; Remark 1.1] that M is a congruence distributive variety since
(1), (3) and (5) give the majority term.

Let A e M, xz,y,z € A. We say that y 1s between x and z, and write xyz,
il (ryz) =wu. By (9) and (4), zyz implies zyz.

LEMMA B. ([6; Lemma 1.2, Lemma 1.3, Lemma 2.1]) The following identities
and implications hold in each A € M.

(12) ((abe)(bac)(cab)) = (abc).
(13) ((acd)eb) = (ac(deb)) = (ac(bed)) = ((acb)cd) .
(l 1) (ablcda)) = (a(bda)(cda)) = (ac(bda)).
15) arb and ayb imply (ray) = (axy) = (yax).
l(») An algebra A € T is subdirectly irreducible if and only if for cvery

oy €A (eyz)=x if y# z and (zyz) =y if y = z.
(I7T) Let 0 € ConA, Ae M, x,y,z,u€ A. If vyz, yzu and x0u, then y0z.
In particular, ryz, yzu and © =u imply y = z.
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Denote by T, the two element algebra from M. If A € M, a, b, ¢ are
pairwise different elements of A, and a = (abc), b = (bac) and ¢ = (cab) hold.
then we say that the elements a, b, ¢ form a triangle, and we use the notation
T, for it. For each cardinal n > 3 denote by T, the algebra of order n in
which any three elements form a subalgebra isomorphic to the triangle T.,. The
algebras T, are the only subdirectly irreducible algebras in the variety 7 (sce.
e.g., (16)). Let A€ M, a,b,c,d € A. A quadruple (a,b,c,d) is said to be cyclic
whenever abe, bed, cda and dab hold.

Results

The following Theorem is due to J. Hedlikov4 (oral communication).

THEOREM 1. Let A € M, a,y,z,u,s € A, y #u, ({z,y,2}:0) = T, and
(y,z,s,u) be a cyclic quadruple. Then the elements x, y, z, s, u generate a
subalgebra B of A, where B = ({z,y,z,t = (zsu),s,u}; (). which is isomor-
phic to the direct product T, x T, . Moreover, B € T .

Proof. Note that y # s because of (3) in Lemma A. Using (17) of
Lemma B, from y # u, we get s # z. Similarly, y # z implies u # s. Hence.
y # u # s # z hold. We shall prove that the following relations follow from our
assumptions:

(1.1) = = (zys) and z = (xzu),
(1.2) y = (zyu) and z = (z23),
(1.3) y = (yxs) and z = (zzu),
(1.4) z = (szy) and y = (uxz2),
(1.5) u = (usz) and s = (sux).
From the cyclic quadruple (y, z,s,u), we get yzs, hence, by (9),

(1.6) (zys) = z.
Then (zys) = ((Iyz)ys) (12 (ry(zus)) (L8) (zyz) = x. Symmetrically, (@rzu)

(13
can be proved and (1.1) holds. (xyu) = ((.ryz)yu) 2 (:zry(zg/u)) = (ryy) ‘ y
(zyu holds since (y, z, s,u) is a cyclic quadruple). Symmetrically. z = (rzs) and
: 2)(9 .
(1.2) holds. (yxs) = ((yxz)xs) () (yz(zws)) (120 (yrz) = y. Symmetrically.
13) 2)(¢
(zru) = z and (1.3) holds. (sry) = (sz(yxz)) = ((HII,'Z);),"I/) 2 (zry) = :.

(1.5

Symmetrically, (vxz) = y and (1.4) holds. (usz) = ((,ljsu)s.r) L ((ysr)su) =
(ysu) = u. Symmetrically, (sua) = s and (1.5) holds.

Take t = (rsu). According to (1.5), (usx) = u # 5 = (suxr). we get u # 1 # ~
by (10) of Lemma A. In view of (12),

(1.7) ({t,u,s}:0)) = T,.
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Since (u, s, z,y) is a cyclic quadruple, too, and u # Yy # 2z # s hold, we get that
the analogous relations to (1.1) - (1.5) hold:

(1.8) t = (tuz) and t = (tsy),
(1.9) u = (tuy) and s = (tsz),
(1.10) u = (utz) and s = (sty),
(1.11) s = (zut) and u = (yts),
(1.12) y = (yzt) and z = (zyt).
Now we shall show that
(1.13) (y,a,t,u) is a cyclic quadruple.
According to (4) and (9), we get
(1.14) ztu, hence, utx.
With respect to (1.2), (4), and (9), we get
(1.15) xyu, hence, uyz.
In view of (15), (1.14), and (1.15), we get
(1.16) (aty) = (tzy) = (yat).
Then (xty) W (zyt) = ((zy2)yt) () (a:y(zyt)) (142 (zyz) = x. It implies
(yxt) = x by (1.16), hence,
(L.17) yat.

Now (1.13) follows from (1.14), (1.17), (1.15) and (1.9). Analogously, it can be
proved that

(L.18) (z,a,t,s) is a cyclic quadruple, in particular, tzz,
hence,

(1.19) (tza)=x.

(1.20) (tyz) = x:

() 1.4)(4 (13 1.7)(4 1.19
(tyz) = (tzy) (e (tz(uzz)) ) ((tzu)zz) oW (tzx) (19 ;.
(L21) ¢ #
In view of (1.13), tuy and wyx. If ¢ = x, then according to (17), y = u, a

contradicticn.
(1.22) t #y:
- (1.18) (1.1) e

Let ¢ = y. Then t =" (xts) = (xys) =" x, hence, y = x, a contradiction.
Analogously, it can be proved

(1.23) t # =.

We have proved that all elements from B are pairwise different. Denote o =
O(r.y). 3= 0(r,t). According to (1.13), (1.18), (1.7), and (17), we get B/ =T,

and /3= T, It is casy to sec that 3= B/a x B/3. Hence, 8= T, xT;.
Finallv. B € T by (16). O

409



HILDA DRASKOVICOVA

THEOREM 2. Let A€ T, a,be.de A, ({a.be}:() =T, ¢ #ds#a.and
cda hold. Then the subalgebra 1B of A generated by the clements a. b, ¢. d s
isomorphic to the direct product T, x T, .

Proof. Let BCII(A; : i € T) be asubdirect decomposition of subdirectly
irreducible algebras A, A, € T. ¢ € I. Without loss of generality. we can
suppose that for cach i € [ the algebra A, has more than one clement. and
that all projections p, from B onto A, have pairwise different kernels Werp, .
For arbitrary element @ € I3 cenote by w, the ith component of the clemen

r, hence, o = (a0 @ € ). The clements a. b. ¢ form a 11'i;\11u’lv. hence. for
cach 7 € [ either a; = b, = ¢, or a;, # b, # ¢, # a; holds. The clement
has to he between tho e‘l(montw a, ful(l ¢; in ;1. =

; T”. which 1s possible only

if d; € {a;,¢;} by (16) of Lermma B. In the case a, = b, = ¢, the algebra

A =p,(DB) hds only one ol(m(n Hence, for cach ¢ € 1. 7& b, 7& ¢, # a, holds
and A, =~ ({a;.b,. ¢, }: )) =~ T, Accordi mg to a #d # c. the clements ioj el
must exist such that d, = a, .m(l d; . We shall .,ho\\ that [ = {i.j}.

k € I. Without loss of gj(nomht\ supposo d,, = a,. Then the mapping

f ‘lk — A, given by f(a,)=a;, f(b,)=0,. f(c,)=c, (fld,) —d, holds. to0)
is an isomorphism, and p, = fop, holds (since thoso homomorphisms coincide on
the set {a,b,c,d} of generators of the algebra B). It implies Kerp, = Kerp, .

hence, 1 = k (for we have supposed that different projections have ditferent
kernels). It was shown that B C A, x A, =T x Ty It is easy to verify that the
clements a = (a;,a;), b= (b, ),). = ( i ), d = (a;.c;) generate the whole

algebra A; x AI Really for the clements ( = (bad). )‘ = (¢be). g = (acf).
h = (b(l,g), [ = (cbh) the following equalities hold: ¢ = (a,.h;). [ = (c.b ).
g=(c;a;), h=(b,a;), l=(b.c;). A 0

THEOREM 3. Let A € T, abe,d € A, ¢ # ¢, and ({a.b.c}:() =T, =
({a,b,c'};()) . Then the subalgebra B of A generated by the elements a.
¢ is isomorphic either to T, or to the direct product T, x T,

Proof. Similarly as in the proof of Theorem 2, let B C 1I(A,: i€ [) bea
subdirect decomposition of subdirectly irreducible dlg(‘bms Ao eT. A > 1.
i € I, and all projections p, of B onto A, have pairwise different kernels Ker p,
(i € I). For cach ¢ € I either a; =b, = ¢, or a; # b, # ¢, # a, holds. In the
case a; = b, = ¢;, we get a, = ¢, and A, = 1. Hence, a;, # b, # ¢, # a,. and
analogously, b, # ¢} # a,. According to ¢ # ¢’. there exists i € [ such that the
elements a,, b;. ¢, ¢ are pairwise different, hence, A, =T, Now we have two
possibilities:

a) There does not exist j € I with the property c; = ('_’/. Then for cach
k e I the elements a,, b,, ¢, ¢ are pairwise different. Shnilarly as in the
proof of Theorem 2, the mapping f: A, — A, given by f(a,) =a,. f(b,) =1,
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f(ey) = ¢;. f(e) = ¢ is an isomorphism such that p, = f o p, holds. Then
Kerp, = Kerp,, and k=i, I ={i}, B=A,.

b) There exists j € I such that ¢; = (,J Then A, ({(11,1),7 J} )) T,
We shall show that [ = {i,j}. If k € I, then we have PlthEI ¢, # ¢ and th(‘n

we get Kerp, = Kerp, and k =1, or ¢, = ¢}, and then we get Kerp, = Ker p;
and A = j. It implies that B C A, x 41 =T, x [’ It is easy to verify that th('
clements a = (a;.a;), b= (b, b)), c=(c;c ) = (¢}, ¢;) generate the whole

algebra A, x /1 R(‘(‘«lll that 7 1s locally f]mte varlety by [13 514 . If k and m
are mhmt(\ (41(1111(115 then the algebras T, and T, generate the same variety
7. since they all have the same finitely generated subalgebras. For n finite let
7, be the subvariety of 7 generated by the subdirectly irreducible algebra T
(or equivalently, by all subdirectly irreducible algebras A € 7 with card A < n ).
The varieties 7, . n = 1,2,...,w, form a strictly increasing scquence (a chain)

and T =T (cf. [13: 5.16]). 0

In the paper [9], it was found a finite equational base for a finite algebra in a
dual discriininator variety using results of [2] and [16]. Recall from [6] that M
(henee, T, too) is a congruence distributive variety. The next Theorem will give
a different finite base of such identities.

THEOREM 4. The subvariety T, of the variety T, 1 <n <w, has the follow-
ing finite base of identities: (1). (2), (T), and

( 1‘11 ) (ln = (17/ :
where

— G S * P— e
dy = (zyxz,), dy = (z,z,z,),
and for i > 2 define inductively

dy = (((‘]2*":34”0)”3311)”’3372) ) dy = (((d‘;x:sxo)l':s""l)‘”3‘”2) J

(IH = ( o (<(d:r—l‘l ‘[(J) 1)1'”1 ) :L‘n'll"’nfl) ’
4, = ( o (((d:f—l'rn‘r())mn‘rl.)‘T'H,‘TQ) te 113”.’17”_1) :

Proof. According to (16) of Lemma B, it is easy to see that in 7], the
identity (7)) is satisfied whenever at least two of the elements z,a,...,x,

arc cqual, but fails whenever all n+ 1 elements are pairwise different. Hence, it

holds in 7, but fails in T, .- O
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