[1] CLARK D. M.-KRAUSS P. H.:
Plain para primal algebras. Algebra Universalis 11 (1980), 365-388.
MR 0602022 |
Zbl 0455.08005
[2] FREESE R.-McKENZIE R.:
Commutator Theory for Congruence Modular Varieties. LMS Lecture Notes vol. 125, Cambridge University Press, Cambridge-New York, 1987.
MR 0909290 |
Zbl 0636.08001
[3] KEARNES K. A.:
Every nearly idempotent plain algebra generates a minimal variety. Algebra Universalis 34 (1995), 322-325.
MR 1348955 |
Zbl 0834.08002
[4] KEARNES K. A.-SZENDREI Á.: Projectivity and isomorphism of strictly simple algebras. Preprint, 1996.
[5] McKENZIE R.: On minimal, locally finite varieties with permuting congruence relations. Preprint, 1976.
[6] McKENZIE R.:
An algebraic version of categorical equivalence for varieties and more general algebraic categories. In: Logic and Algebra. Proceedings of the Magari Conference, Pontignano, Italy, April 1994, pp. 211-243; Lecture Notes in Pure and Appl. Math. 180, M. Dekker, New Yоrk, 1996.
MR 1404941
[7] POST E. L.:
The Two-Valued Iterative Systems of Mathematical Logic. Ann. of Math. Stud. 5, Princeton Univ. Press, Princeton, 1941.
MR 0004195 |
Zbl 0063.06326
[9] SZENDREI Á.:
Idempotent algebras with restrictions on subalgebras. Acta Sci. Math. (Szeged) 51 (1987), 251-268.
MR 0911575 |
Zbl 0633.08002
[10] SZENDREI Á.:
Every idempotent plain algebra generates a minimal variety. Algebra Universal s 25 (1988), 36-39.
MR 0935000 |
Zbl 0618.08002
[12] SZENDREI A.:
Expansions of minimal varieties. Acta Sci. Math. (Szeged) 60 (1995), 659-679.
MR 1348937 |
Zbl 0833.08005