Previous |  Up |  Next

Article

References:
[1] CLARK D. M.-KRAUSS P. H.: Plain para primal algebras. Algebra Universalis 11 (1980), 365-388. MR 0602022 | Zbl 0455.08005
[2] FREESE R.-McKENZIE R.: Commutator Theory for Congruence Modular Varieties. LMS Lecture Notes vol. 125, Cambridge University Press, Cambridge-New York, 1987. MR 0909290 | Zbl 0636.08001
[3] KEARNES K. A.: Every nearly idempotent plain algebra generates a minimal variety. Algebra Universalis 34 (1995), 322-325. MR 1348955 | Zbl 0834.08002
[4] KEARNES K. A.-SZENDREI Á.: Projectivity and isomorphism of strictly simple algebras. Preprint, 1996.
[5] McKENZIE R.: On minimal, locally finite varieties with permuting congruence relations. Preprint, 1976.
[6] McKENZIE R.: An algebraic version of categorical equivalence for varieties and more general algebraic categories. In: Logic and Algebra. Proceedings of the Magari Conference, Pontignano, Italy, April 1994, pp. 211-243; Lecture Notes in Pure and Appl. Math. 180, M. Dekker, New Yоrk, 1996. MR 1404941
[7] POST E. L.: The Two-Valued Iterative Systems of Mathematical Logic. Ann. of Math. Stud. 5, Princeton Univ. Press, Princeton, 1941. MR 0004195 | Zbl 0063.06326
[8] SZENDREI Á.: Clones in Universal Algebra. Sém. Math. Sup. 99 (1986). MR 0859550 | Zbl 0603.08004
[9] SZENDREI Á.: Idempotent algebras with restrictions on subalgebras. Acta Sci. Math. (Szeged) 51 (1987), 251-268. MR 0911575 | Zbl 0633.08002
[10] SZENDREI Á.: Every idempotent plain algebra generates a minimal variety. Algebra Universal s 25 (1988), 36-39. MR 0935000 | Zbl 0618.08002
[11] SZENDREI Á.: Term minimal algebras. Algebra Universalis 32 (1994), 439-477. MR 1300482 | Zbl 0812.08001
[12] SZENDREI A.: Expansions of minimal varieties. Acta Sci. Math. (Szeged) 60 (1995), 659-679. MR 1348937 | Zbl 0833.08005
[13] TAYLOR W.: The fine spectrum of a variety. Algebra Universalis 5 (1975), 263-303. MR 0389716 | Zbl 0336.08004
Partner of
EuDML logo