Previous |  Up |  Next

Article

References:
[1] AUBIN J.-P., EKELAND I.: Applied Nonlinear Analysis. Wiley, New York, 1984. MR 0749753 | Zbl 0641.47066
[2] BARBU V.: Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing. Leiden, 1976. MR 0390843
[3] BISMUT J.-M.: Integrales convexes et probabilités. J. Math. Anal. Appl. 42 (1973), 639-673. MR 0324734 | Zbl 0268.60003
[4] CELLINA A., ORNELAS A.: Convexity and the closure of the solution set to differential inclusions. Boll. Un. Mat. Ital. B 4 (1990), 255-263. MR 1061215 | Zbl 0719.34031
[5] DeBLASI F.-MYJAK J.: On continuous approximations for multifunctions. Pacific J. Math. 123 (1986), 9-31. MR 0834135
[6] DIESTEL J., UHL J. J.: Vector Measures. Math. Surveys Monographs 15, Amer. Math. Soc, Providence, RI, 1977. MR 0453964 | Zbl 0369.46039
[7] FILIPPOV A.: Classical solutions of differential equations with multivalued right hand side. SIAM J. Control Optim. 5 (1967), 609-621. MR 0220995
[8] FRYSZKOWSKI A.: Continuous selections for a class of nonconvex multivalued maps. Studia Math. 76 (1983), 163-174. MR 0730018
[9] HEWITT E., STROMBERG K.: Real and Abstract Analysis. Graduate Texts in Math. Vol. 25. (3th edition), Springer, New York, 1975. MR 0367121 | Zbl 0307.28001
[10] HIMMELBERG C.: Measaurable relations. Fund. Math. 87 (1975), 52-72. MR 0367142
[11] KANDILAKIS D., PAPAGEORGIOU N. S.: On the properties of the Aumann integral with applications to differential inclusions and control systems. Czechoslovak Math. J. 39 (1989), 1-15. MR 0983479 | Zbl 0677.28005
[12] KLEIN E., THOMPSON A.: Theory of Correspondences. Wiley, New York, 1984. MR 0752692 | Zbl 0556.28012
[13] NAGY E.: A theorem on compact embedding for functions with values in an infinite dimensional Hilbert space. Ann. Univ. Sci. Budapest, Eotvos Sect. Math. 29 (1986), 243-245.
[14] PAPAGEORGIOU N. S.: Relaxation and existence of optimal controls for systems governed by evolution inclusions in separable Banach spaces. J. Optim. Theory Appl. 64 (1990), 573-594. MR 1043741
[15] PAPAGEORGIOU N. S.: Convergence theorems for Banach space valued integrable multifunction. Internat. J. Math. Math. Sci. 10 (1987), 433-442. MR 0896595
[16] PAPAGEORGIOU N. S.: Measurable multifunctions and their applications to convex integral functions. Internat. J. Math. Math. Sci. 12 (1987), 175-192. MR 0973087
[17] PAPAGEORGIOU N. S.: On measurable multifunctions with applications to random multivalued equations. Math. Japon. 32 (1987), 437-464. MR 0914749 | Zbl 0634.28005
[18] PAPAGEORGIOU N. S.: On multivalued evolution and differential inclusions in Banach spaces. Comment. Math. Univ. St. Paul. 36 (1987), 21-39. MR 0892378
[19] PAPAGEORGIOU N. S.: Decomposable sets in the Lebesgue-Bochner spaces. Comment. Math. Univ. St. Paul. 37 (1988), 49-62. MR 0942305 | Zbl 0679.46032
[20] PAPAGEORGIOU N. S.: On the theory of Banach's space valued integrable multifunctions. Part 1: Integration and conditional expectation. J. Multivariate Anal. 17 (1985), 185-206. MR 0808276
[21] ROCKAFELLAR R. T.: Weak compactness of level sets of integral functions. In: Proceedings of Troisiĕme Colloque d'Analyse Fonctionnelle (CBRM) (H. Garnir, ed.), Liege, Belgium, 1971. MR 0407678
[22] TANABE H.: Equations in Evolution. Pitman, London, 1979.
[23] WAGNER D.: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859-903. MR 0486391 | Zbl 0407.28006
[24] ZEIDLER E.: Nonlinear Functional Analysis and its Applications II. Springer, New York, 1990. MR 0816732 | Zbl 0684.47029
[25] FRANKOWSKA H.: A priori estimates for operational differential inclusions. J. Differential Equations 84 (1990), 100-128. MR 1042661 | Zbl 0715.49010
[26] TOLSTONOGOV A.: On the properties of integral solutions with m-accertive operators. Soviet. Math. Notes 49 (1991), 119-131. MR 1135523
Partner of
EuDML logo