Previous |  Up |  Next

Article

References:
[1] ANDRES J.: Note to the asymptotic behaviour of solutions of damped pendulum equations under forcing. J. Nonlin. Anal. T.M.A. 18 (1992), 705-712. MR 1160114 | Zbl 0763.34038
[2] ANDRES J.: Lagrange stability of higher-order analogy of damped pendulum equations. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 106, Phys. 31 (1992), 154-159. Zbl 0823.70018
[3] ANDRES J.: Problem of Barbashin in the case of forcing. In: Qualit. Theory of Differential Equations (Szeged, 1988). Colloq. Math. Soc. János Bolyai 53, North-Holland, Amsterdam-New York, 1989, pp. 9-16. MR 1062630
[4] ANDRES J.-VLČEK V.: Asymptotic behaviour of solutions to the n-th order nonlinear differential equation under forcing. Rend. 1st. Mat. Univ. Trieste 21 (1989), 128-143. MR 1142529 | Zbl 0753.34020
[5] BARBASHIN V. A.-TABUEVA E. A.: Dynamical Systems with Cylindrical Phase Space. (Russian), Nauka, Moscow, 1964.
[6] CHENCINER A.: Systèmes dynamiques differentiables. In: Encyclopedia Universalis, Universalia, Paris, 1978.
[7] COPPEL W. A.: Stability and Asymptotic Behavior of Differential Equations. D.C Heath, Boston, 1965. MR 0190463 | Zbl 0154.09301
[8] D'HUMIÈRES D.-BEASLEY M. R.-HUBERMAN B. A.-LIBCHABER A.: Chaotic states and routes to chaos in the forced pendulum. Phys. Rev. A 26 (1982), 3483-3496.
[9] GREBOGI, C-NUSSE H. E.-OTT E.-YORKE J. A.: Basic sets: sets that determine the dimension of basin boundaries. In: Lecture Notes in Math. 1342, Springer, New York-Berlin, 1988, pp. 220-250. MR 0970558
[10] GUCKENHEIMER J.-HOLMES P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Appl. Math. Sci. 42, Springer, New York-Berlin, 1984. MR 1139515
[11] LEONOV G. A.: On a problem of Barbashin. Vestnik Leningrad Univ. Math. 13 (1981), 293-297. MR 1279993
[12] MAWHIN J.: Periodic oscillations of forced pendulum-like equations. In: Lecture Notes in Math. 964, Springer, New York-Berlin, 1982. MR 0693131 | Zbl 0517.34029
[13] MAWHIN J.: The forced pendulum: A paradigm for nonlinear analysis and dynamical systems. Exposition. Math. 6 (1988), 271-287. MR 0949785 | Zbl 0668.70028
[14] MOSER J.: Stable and Random Motions in Dynamical Systems. Princeton Univ. Press and Univ. of Tokyo Press, Princeton, 1973. MR 0442980 | Zbl 0271.70009
[15] ORTEGA R.: A counterexample for the damped pendulum equation. Bull. Roy. Acad. Sci. Belgique 73 (1987), 405-409. MR 1026970 | Zbl 0679.70022
[16] ORTEGA R.: Topological degree and stability of periodic solutions for certain differential equations. J. London Math. Soc., (To appear). MR 1087224 | Zbl 0677.34042
[17] PALMER K. J.: Exponential dichotomies and transversal homoclinic points. J. Differential Equations 55 (1984), 225-256. MR 0764125 | Zbl 0508.58035
[18] PARK B. S., GREBOGI C., OTT E., YORKE J. A.: Scaling of fractal basin boundaries near intermittency transitions to chaos. Phys. Rev. A 40 (1989), 1576-1581. MR 1009327
[19] POPOV V. M.: Hyperstability of Control Systems. Springer, Berlin, 1973. MR 0387749 | Zbl 0276.93033
[20] SANDERS J., VERHULST F.: Averaging Methods in Nonlinear Dynamical Systems. Appl. Math. Sci. 59, Springer, New York-Berlin, 1985. MR 0810620 | Zbl 0586.34040
[21] SĘDZIWY S.: Boundedness of solutions of an n-th order nonlinear differential equation. Atti Accad. Naz. Lincei 64 (1978), 363-366. MR 0551517 | Zbl 0421.34040
[22] SEIFERT G.: The asymptotic behaviour of solutions of pendulum type equations. Ann. of Math. 69 (1959), 75-87. MR 0100703
[23] SHAHGIL'DJAN V. V., LJAHOVKIN A. A.: Systems of Phase-Shift Automatic Frequency. (Russian), Control. Svjaz, Moscow, 1972.
[24] SWICK K. E.: Asymptotic behavior of the solutions of certain third order differential equations. SIAM J. Appl. Math. 19 (1970), 96-102. MR 0267212 | Zbl 0212.11403
[25] TRICOMI F.: Integrazione di un'equazione differenziale presentatasi in elettrotecnia. Ann. R. Sc. Norm. Sup. di Pisa 2 (1933), 1-20. MR 1556692
[26] VORÁČEK J.: On the solution of certain non-linear differential equations of the third order. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 33 (1971), 147-156. MR 0320455 | Zbl 0287.34033
[27] YOU J.: Invariant tori and Lagrange stability of pendulum-type equations. J. Differential Equations 85 (1990), 54-65. MR 1052327 | Zbl 0702.34047
Partner of
EuDML logo