[1] Behboodian J., Dolati A., Úbeda-Flores M.: Measures of association based on average quadrant dependence. J. Probab. Statist. Sci. 3 (2005), 161–173
[2] Capérà P., Fougères A.-L., Genest C.: A stochastic ordering based on a decomposition of Kendall’s tau. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 81–86
[3] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Constructing copulas with given diagonal and opposite diagonal sections, to appea.
[4] Durante F., Kolesárová A., Mesiar, R., Sempi C.:
Copulas with given diagonal sections: novel constructions and applications. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 15 (2007), 397–410
DOI 10.1142/S0218488507004753 |
MR 2362234 |
Zbl 1158.62324
[5] Fredricks G. A., Nelsen R. B.:
Copulas constructed from diagonal sections. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136
MR 1614666 |
Zbl 0906.60022
[6] Fredricks G. A., Nelsen R. B.:
The Bertino family of copulas. In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91
MR 2058982 |
Zbl 1135.62334
[8] Gini C.: L’Ammontare e la composizione della ricchezza delle nazione. Bocca Torino 1914
[9] Mikusiński P., Sherwood, H., Taylor M. D.:
Shuffles of Min. Stochastica 13 (1992), 61–74
MR 1197328 |
Zbl 0768.60017
[16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.:
Kendall distribution functions and associative copulas. Fuzzy Sets and Systems 160 (2009), 52–57
MR 2469430 |
Zbl 1183.60006
[17] Sklar A.:
Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231
MR 0125600
[18] Sklar A.:
Random variables, joint distributions, and copulas. Kybernetika 9 (1973), 449–460
MR 0345164
[19] Spearman C.: ‘Footrule’ for measuring correlation. British J. Psychology 2 (1906), 89–108