Previous |  Up |  Next

Article

Keywords:
copula; diagonal section; distribution function; Lipschitz condition; opposite diagonal section; ordering; Spearman’s footrule
Summary:
In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.
References:
[1] Behboodian J., Dolati A., Úbeda-Flores M.: Measures of association based on average quadrant dependence. J. Probab. Statist. Sci. 3 (2005), 161–173
[2] Capérà P., Fougères A.-L., Genest C.: A stochastic ordering based on a decomposition of Kendall’s tau. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 81–86
[3] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Constructing copulas with given diagonal and opposite diagonal sections, to appea.
[4] Durante F., Kolesárová A., Mesiar, R., Sempi C.: Copulas with given diagonal sections: novel constructions and applications. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 15 (2007), 397–410 DOI 10.1142/S0218488507004753 | MR 2362234 | Zbl 1158.62324
[5] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 MR 1614666 | Zbl 0906.60022
[6] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas. In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 MR 2058982 | Zbl 1135.62334
[7] Genest C., Rivest L.-P.: On the multivariate probability integral transformation. Statist. Probab. Lett. 53 (2001), 391–399 DOI 10.1016/S0167-7152(01)00047-5 | MR 1856163 | Zbl 0982.62056
[8] Gini C.: L’Ammontare e la composizione della ricchezza delle nazione. Bocca Torino 1914
[9] Mikusiński P., Sherwood, H., Taylor M. D.: Shuffles of Min. Stochastica 13 (1992), 61–74 MR 1197328 | Zbl 0768.60017
[10] Nelsen R. B.: Concordance and Gini’s measure of association. J. Nonparametric Statist. 9 (1998), 227–238 DOI 10.1080/10485259808832744 | MR 1649514 | Zbl 0919.62057
[11] Nelsen R. B.: An Introduction to Copulas. Second edition. Springer, New York 2006 MR 2197664 | Zbl 1152.62030
[12] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Distribution functions of copulas: a class of bivariate probability integral transforms. Statist. Probab. Lett. 54 (2001), 277–282 DOI 10.1016/S0167-7152(01)00060-8 | MR 1857942 | Zbl 0992.60020
[13] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Kendall distribution functions. Statist. Probab. Lett. 65 (2003), 263–268 DOI 10.1016/j.spl.2003.08.002 | MR 2018039 | Zbl 1183.60006
[14] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348–358 DOI 10.1016/j.jmva.2003.09.002 | MR 2081783 | Zbl 1057.62038
[15] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: On the construction of copulas and quasi-copulas with given diagonal sections. Insurance: Math. Econ. 42 (2008), 473–483 DOI 10.1016/j.insmatheco.2006.11.011 | MR 2404309 | Zbl 1152.60311
[16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Kendall distribution functions and associative copulas. Fuzzy Sets and Systems 160 (2009), 52–57 MR 2469430 | Zbl 1183.60006
[17] Sklar A.: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
[18] Sklar A.: Random variables, joint distributions, and copulas. Kybernetika 9 (1973), 449–460 MR 0345164
[19] Spearman C.: ‘Footrule’ for measuring correlation. British J. Psychology 2 (1906), 89–108
Partner of
EuDML logo