[2] Alsina C., Frank M. J., Schweizer B.:
Associative Functions: Triangular Norms and Copulas. World Scientific Publishing Co., Singapore 2006
MR 2222258 |
Zbl 1100.39023
[5] Callan D.:
Some bijections and identities for the Catalan and Fine numbers. Séminaire Lotharingen de Combinatoire 53 (2006), B53e (16 pp)
MR 2221363 |
Zbl 1084.05002
[6] Cameron N. T.:
Random Walks, Trees and Extensions of Riordan Group Techniques. Ph.D. Thesis. Howard University 2002
MR 2703896
[8] Darsow W. F., Frank M. J.:
Associative functions and Abel–Schröder systems. Publ. Math. Debrecen 30 (1983), 253–272
MR 0739487 |
Zbl 0542.39001
[9] Deheuvels P.:
La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274–292
MR 0573609 |
Zbl 0422.62037
[11] Erdely A.: Diagonal Properties of the Empirical Copula and Applications. Construction of Families of Copulas with Given Restrictions. Ph.D. Thesis, Universidad Nacional Autónoma de México 2007
[12] Feller W.:
An Introduction to Probability Theory and Its Applications, Vol. 1. Third edition. Wiley, New York 1968
MR 0228020 |
Zbl 0598.60003
[13] Frank M. J.:
Diagonals of copulas and Schröder’s equation. Aequationes Math. 51 (1996), 150
MR 1144584
[15] Klement E. P., Mesiar, R., Pap E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000
MR 1790096 |
Zbl 1087.20041
[16] Klement E. P., Mesiar R.:
Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam 2005
MR 2166082 |
Zbl 1063.03003
[17] Kolesárová A., Mesiar R., Mordelová, J., Sempi C.:
Discrete Copulas. IEEE Trans. Fuzzy Systems 14 (2006), 698–705
DOI 10.1109/TFUZZ.2006.880003
[19] Kuczma M.:
Functional Equations in a Single Variable. Polish Scientific Publishers, Warsaw 1968
MR 0228862 |
Zbl 0725.39003
[20] Kuczma M., Choczewski, B., Ger R.:
Iterative Functional Equations. Cambridge University Press, New York 1990
MR 1067720 |
Zbl 1141.39023
[21] Mayor G., Suner, J., Torrens J.:
Copula-like operations on finite settings. IEEE Trans. Fuzzy Systems 13 (2005), 468–477
DOI 10.1109/TFUZZ.2004.840129
[22] McNeil A. J., Nešlehová J.:
Multivariate Archimedean copulas, $D$-monotone functions and $l_{1}$-norm symmetric distributions. Ann. Statist, to appear
MR 2541455
[23] Mesiar R.: Discrete copulas – what they are. In: Joint EUSFLAT-LFA 2005, Conference Proc. (E. Montsenyand P. Sobrevilla, eds.) Universitat Politecnica de Catalunya, Barcelona 2005, pp. 927–930
[26] Sklar A.:
Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231
MR 0125600