[1] Javid A. Ahmadi:
Copulas with truncation-invariance property. Comm. Statist. A – Theory Methods, to appear
MR 2589808
[2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.:
Aggregation Operators: Properties, Classes and Construction Methods. (Studies in Fuzziness and Soft Computing – Aggregation Operators, New Trend and Applications.) Physica-Verlag, Heidelberg 2002, pp. 3–106
MR 1936383 |
Zbl 1039.03015
[4] Durante F., Foschi, B., Spizzichino S.:
Threshold copulas and positive dependence. Statist. Probab. Lett., to appear
MR 2474379 |
Zbl 1148.62032
[7] Durante F., Saminger-Platz, S., Sarkoci P.:
Rectangular patchwork for bivariate copulas and tail dependence. Comm. Statist. A – Theory Methods, to appear
MR 2596930 |
Zbl 1170.62329
[10] Klement E. P., Mesiar, R., Pap E.:
Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104 (1999), 3–14
MR 1685803 |
Zbl 0953.26008
[11] Mesiar R., Szolgay J.: $W$-ordinal sums of copulas and quasi-copulas. In: Proc. MAGIA 2004 Conference, Kočovce 2004, pp. 78–83
[14] Sklar M.:
Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231
MR 0125600