[3] Berman A., Plemmons R. J.:
Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York 1979
MR 0544666 |
Zbl 0815.15016
[4] Bielecki T. D., Hernández-Hernández, D., Pliska S. R.:
Risk-sensitive control of finite state Markov chains in discrete time, with application to portfolio management. Math. Methods Oper. Res. 50 (1999), 167–188
MR 1732397
[5] Cavazos-Cadena R.:
Solution to the risk-sensitive average cost optimality equation in a class of Markov decision processes with finite state space. Math. Methods Oper. Res. 57 (2003), 253–285
MR 1973378 |
Zbl 1023.90076
[6] Cavazos-Cadena R., Montes-de-Oca R.:
The value iteration algorithm in risk-sensitive average Markov decision chains with finite state space. Math. Oper. Res. 28 (2003), 752–756
MR 2015911 |
Zbl 1082.90125
[7] Cavazos-Cadena R., Montes-de-Oca R.:
Nonstationary value iteration in controlled Markov chains with risk-sensitive average criterion. J. Appl. Probab. 42 (2005), 905–918
MR 2203811 |
Zbl 1105.90101
[8] Cavazos-Cadena R., Hernández-Hernández D.:
Solution fo the risk-sensitive average optimality equation in communicating Markov decision chains with finite state space: An alternative approach. Math. Methods Oper. Res. 56 (2002), 473–479
MR 1953028
[9] Cavazos-Cadena R., Hernández-Hernández D.:
A characterization exponential functionals in finite Markov chains. Math. Methods Oper. Res. 60 (2004), 399–414
MR 2106091
[10] Cavazos-Cadena R., Hernández-Hernández D.:
A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains. Ann. Appl. Probab. 15 (2005), 175–212
MR 2115041 |
Zbl 1076.93045
[11] Gantmakher F. R.: The Theory of Matrices. Chelsea, London 1959
[12] Howard R. A., Matheson J.:
Risk-sensitive Markov decision processes. Manag. Sci. 23 (1972), 356–369
MR 0292497 |
Zbl 0238.90007
[13] Jaquette S. A.:
A utility criterion for Markov decision processes. Manag. Sci. 23 (1976), 43–49
MR 0439037 |
Zbl 0337.90053
[14] Mandl P.:
Decomposable non-negative matrices in a dynamic programming problem. Czechoslovak Math. J. 20 (1970), 504–510
MR 0264978 |
Zbl 0209.22902
[15] Rothblum U. G., Whittle P.:
Growth optimality for branching Markov decision chains. Math. Oper. Res. 7 (1982), 582–601
MR 0686533 |
Zbl 0498.90082
[16] Sladký K.:
On dynamic programming recursions for multiplicative Markov decision chains. Math. Programming Study 6 (1976), 216–226
MR 0452725 |
Zbl 0374.60089
[17] Sladký K.:
Successive approximation methods for dynamic programming models. In: Proc. of the Third Formator Symposium on the Analysis of Large-Scale Systems (J. Beneš and L. Bakule, eds.). Academia, Prague 1979, pp. 171–189
Zbl 0496.90081
[18] Sladký K.:
Bounds on discrete dynamic programming recursions I. Kybernetika 16 (1980), 526–547
MR 0607292 |
Zbl 0454.90085
[19] Whittle P.:
Optimization Over Time – Dynamic Programming and Stochastic Control. Volume II, Chapter 35, Wiley, Chichester 1983
MR 0710833
[20] Zijm W. H. M.:
Nonnegative Matrices in Dynamic Programming. Mathematical Centre Tract, Amsterdam 1983
MR 0723868 |
Zbl 0526.90059